
telefaks* application server for
FreeSWITCH

Peter Steinbach

Mein50Plus GmbH
Theo-Geisel-Str. 25
Usingen, Germany, 61250
Tel.: +49 6081 688 533
www.telefaks.de
Information@telefaks.de

2

Who we are

• Coming from Asterisk

• On Freeswitch since beg. of June 2008

• Transferred all our applications to Freeswitch since then

• Strong focus on

– Integrating Freeswitch
– Ruby and Rails Development
– Encryption

Why an application server
framework?
• Our Freeswitch projects usually have a larger scale than

e.g. an Asterisk PBX

• A single Freeswitch is per default configured by XML files

• On top there exists a number of interfaces for
configuration and synchroneous/asynchroneous call
control

• Integrating large projects therefore requires a lot of
groundwork to be done

• Some nice GUIs exist already, each one targeting a
dedicated scenario (e.g. PBX, Callcenter)

• however, a system which will cover all scenarios by
100% will most probably never exist

Bottom line

We need a framework
to abstract functionalities for

integrating large Freeswitch projects

What is basically needed for that?

• Administration GUI

• Handling of more than one freeswitch server

• Customer hierarchies

• IVR functionalities

• Callcenter support

• Asynchroneous call handling

• Realtime interface with web browser (e.g. push
status)

What is it built of

• Freeswitch of course

• some Ruby processes for interfacing with Freeswitch

• Ruby on Rails for the web interface

• Javascript and AJAX for the web interface

• a bit of LUA

• a push server

(Ruby on Rails and performance? We will see that later)

What ist covers

• Support of multiple Freeswitch servers
• Basic PBX functionalities (is needed almost everywhere)
• Conferencing (setup and „live“ management)
• Call Queues
• Callback/dialthru
• IVR State machine with setup via GUI
• Callcenter workflows with direct interaction between browser

and freeswitch
• TTS and ASR Support
• Encryption of calls (TLS/SRTP)
• Complex routing algorithms for larger networks
• Prepared for billing functionalities
• Channel Spy
• Custom applications
• Interface to SyncML ... more

How it's designed

04.08.09

PBX
functionalities

Sample PBX functionalities

• Serve multiple clients
• Clients can be spread over multiple instances of Freeswitch
• User administration with client hierarchies

• Management of SIP endpoints
• Voicemail
• Call forwarding (parallel + sequential hunting)
• Short numbers for each endpoint
• One-time numbers (or n times usage), obfuscated numbers
• Dialthru/Callback
• Special numbers
• Conferences
• Call queues
• Encryption TLS/SRTP
• ... more

Sample PBX functionalities

Sample Conferencing
functionalities
• Conference definition

Sample Conferencing
functionalities
• Conference live management

Sample PBX functionalities

• Operator Panel (still in development)
– similar to „Flash Operator Panel“ for Asterisk
– initiate, answer, transfer and drop calls via „Drag and Drop“

(see example videos)

04.08.09

IVR
functionalities

IVR Functionalities

• Built-in state machine for defining IVRs and other workflows
• IVRs are defined the following way:

– draw the callflow as UML state diagramm
• define actions
• define transitions

– Upload UML state diagram to the application server
– specify actions on the web GUI
– test the state machine on the web GUI (html)
– take the state machine into production (now with voice)

• Interaction with the caller
– play sound files or sound streams
– text to speech
– read DTMF
– voice menus (DTMF)
– record users voice and playback later
– word recognition (ASR)

• early media mode for some actions

IVR Callback and Callthru application
Step1: Draw the workflow

Goal:
• Identify client/caller
• Hangup, then store callback number if client is callback customer
• Next step: callback to the client
• Offer to enter target number via DTMF and connect the call

IVR Callback and Callthru applikation
Step2: Specify actions in detail

IVR Callback and Callthru applikation
Step 2: Test workflow on the web browser

04.08.09

Callcenter
functionalities

Callcenter application framework

• Extension to IVR Application
• Webbrowser initiates actions on Freeswitch
• Freeswitch pushes data to the web browser (AJAX push

services)
• Interactions to Freeswitch

– Dial a number from a database
– Answer a call
– Play messages
– Start recording
– Stop recording
– Forward call
– Hangup Call

• Push services to the web browser
– Show status of a call
– Alert incoming calls
– Open CRM window

04.08.09

Sample callcenter application:
Step 1: Define Workflow

Get new number
from the database

control recording

Save to database via database profiles

User input defines
next steps

Forms

04.08.09

Sample callcenter application:
Step 2: Define Forms

Define new form elements Preview new form

04.08.09

Sample callcenter application:
Step 3: Run workflow

History

04.08.09

Push services

Push services

• every GUI user has an assigned phone number
• web browser registers on this phone number
• web browser gets status pushed from Freeswitch

– Example: successful hangup

• Incoming call:

• Active call:

04.08.09

Customizing
your application

Call Routing with regular
expressions

Call handling via templates

 <!-- start a generic conference with the settings of the "default" conference profile -->

 <!-- Target No $target_number$ -->

 <extension name="conference $conference_name$">

 <condition field="destination_number" expression="^(\d+)$">

 <action application="set" data="dialplan_comment=$dialplan_comment$"/>

 <!-- this is filled up with external participiants and a hangup hook if needed -->

 $conference_inivitations$

 <action application="answer"/>

 <action application="send_display" data="Conference $1"/>

 <action application="conference" data="$conference_number$@$context$"/>

 </condition>

 </extension>

• Application server defines additional variables
• Variables are expanded at runtime

Customizing your own applications
Example: Wikipedia
• Special numbers can be used to trigger own dialplan actions
• dialplan actions can be XML templates or customized Ruby code

Customizing your own applications
Example: Wikipedia
def self.speak_wikipedia(search_exp)

 text=self.get_wikipedia_text(search_exp)

 master="<action application=\"speak\" data=\"cepstral|katrin|$text$\"/>\n"

 erg= "<!-- Wikipedia entry to speak: '#{search_exp}' -->\n"

 if text

 text.each do |line|

 if !line.strip.empty?

 erg+=master.gsub("$text$", line)

 end

 end

 end

 erg

end

Some examples for customizing

• Wikipedia as shown before
• Speak selected content of news sites
• Speak RSS feeds
• Speak file contents
• Speak meter values from external interfaces
• Access calendar from SyncML (Funambol)
• Intercom, global announcements
• Reverse internet CID lookup

Performance

• using caching techniques whereever applicable
– „Memcache“ allows distributed caching over multiple servers

• Tested under High Load
– up to 250 call setups per second out of the box on a Dual Core AMD

2,5GHz (caching enabled)
– up to 160 call setups per second out of the box on a Dual Core AMD

2,5GHz (caching disabled)

• Outlook:
– scales well with the number of processors (processes are CPU

intensitive)
– scales well with the number of machines (http cluster techniques used)
– Further performance improvement with Ruby 1.9 and optimized, self-

compiled Ruby binaries

Thank you!

Peter Steinbach
steinbach@telefaks.biz

Hans-Jürgen Bornhorst
bornhorst@telefaks.biz

mailto:steinbach@telefaks.biz
mailto:bornhorst@telefaks.biz

