| File: | libs/libsndfile/src/ALAC/alac_encoder.c |
| Location: | line 287, column 2 |
| Description: | Value stored to 'minBits' is never read |
| 1 | /* |
| 2 | * Copyright (c) 2011 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2012-2013 Erik de Castro Lopo <erikd@mega-nerd.com> |
| 4 | * |
| 5 | * @APPLE_APACHE_LICENSE_HEADER_START@ |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | * you may not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | * |
| 19 | * @APPLE_APACHE_LICENSE_HEADER_END@ |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | File: ALACEncoder.cpp |
| 24 | */ |
| 25 | |
| 26 | // build stuff |
| 27 | #define VERBOSE_DEBUG0 0 |
| 28 | #define DebugMsgprintf printf |
| 29 | |
| 30 | // headers |
| 31 | #include <stdio.h> |
| 32 | #include <stdlib.h> |
| 33 | #include <string.h> |
| 34 | |
| 35 | #include "sfendian.h" |
| 36 | |
| 37 | #include "alac_codec.h" |
| 38 | |
| 39 | #include "aglib.h" |
| 40 | #include "dplib.h" |
| 41 | #include "matrixlib.h" |
| 42 | |
| 43 | #include "ALACBitUtilities.h" |
| 44 | #include "ALACAudioTypes.h" |
| 45 | #include "EndianPortable.h" |
| 46 | |
| 47 | typedef enum |
| 48 | { |
| 49 | false = 0, |
| 50 | true = 1 |
| 51 | } bool ; |
| 52 | |
| 53 | static void GetConfig(ALAC_ENCODER *p, ALACSpecificConfig * config ); |
| 54 | |
| 55 | static int32_t EncodeStereo(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
| 56 | static int32_t EncodeStereoFast(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
| 57 | static int32_t EncodeStereoEscape(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t numSamples ); |
| 58 | static int32_t EncodeMono(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
| 59 | |
| 60 | |
| 61 | |
| 62 | // Note: in C you can't typecast to a 2-dimensional array pointer but that's what we need when |
| 63 | // picking which coefs to use so we declare this typedef b/c we *can* typecast to this type |
| 64 | typedef int16_t (*SearchCoefs)[kALACMaxCoefs]; |
| 65 | |
| 66 | // defines/constants |
| 67 | const uint32_t kALACEncoderMagic = MAKE_MARKER ('d', 'p', 'g', 'e')((uint32_t) (('d') | (('p') << 8) | (('g') << 16) | (((uint32_t) ('e')) << 24))); |
| 68 | const uint32_t kMaxSampleSize = 32; // max allowed bit width is 32 |
| 69 | const uint32_t kDefaultMixBits = 2; |
| 70 | const uint32_t kDefaultMixRes = 0; |
| 71 | const uint32_t kMaxRes = 4; |
| 72 | const uint32_t kDefaultNumUV = 8; |
| 73 | const uint32_t kMinUV = 4; |
| 74 | const uint32_t kMaxUV = 8; |
| 75 | |
| 76 | // static functions |
| 77 | #if VERBOSE_DEBUG0 |
| 78 | static void AddFiller( BitBuffer * bits, int32_t numBytes ); |
| 79 | #endif |
| 80 | |
| 81 | |
| 82 | /* |
| 83 | Map Format: 3-bit field per channel which is the same as the "element tag" that should be placed |
| 84 | at the beginning of the frame for that channel. Indicates whether SCE, CPE, or LFE. |
| 85 | Each particular field is accessed via the current channel indx. Note that the channel |
| 86 | indx increments by two for channel pairs. |
| 87 | |
| 88 | For example: |
| 89 | |
| 90 | C L R 3-channel input = (ID_CPE << 3) | (ID_SCE) |
| 91 | indx 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3) |
| 92 | indx 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3) |
| 93 | |
| 94 | C L R Ls Rs LFE 5.1-channel input = (ID_LFE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE) |
| 95 | indx 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3) |
| 96 | indx 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3) |
| 97 | indx 3 value = (map & (0x7ul << (3 * 3))) >> (3 * 3) |
| 98 | indx 5 value = (map & (0x7ul << (5 * 3))) >> (5 * 3) |
| 99 | indx 7 value = (map & (0x7ul << (7 * 3))) >> (7 * 3) |
| 100 | */ |
| 101 | static const uint32_t sChannelMaps[kALACMaxChannels] = |
| 102 | { |
| 103 | ID_SCE, |
| 104 | ID_CPE, |
| 105 | (ID_CPE << 3) | (ID_SCE), |
| 106 | (ID_SCE << 9) | (ID_CPE << 3) | (ID_SCE), |
| 107 | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
| 108 | (ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
| 109 | (ID_SCE << 18) | (ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
| 110 | (ID_SCE << 21) | (ID_CPE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE) |
| 111 | }; |
| 112 | |
| 113 | static const uint32_t sSupportediPodSampleRates[] = |
| 114 | { |
| 115 | 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 |
| 116 | }; |
| 117 | |
| 118 | |
| 119 | #if PRAGMA_MARK0 |
| 120 | #pragma mark - |
| 121 | #endif |
| 122 | |
| 123 | void |
| 124 | alac_set_fastmode (ALAC_ENCODER * p, int32_t fast ) |
| 125 | { |
| 126 | p->mFastMode = fast; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | /* |
| 131 | HEADER SPECIFICATION |
| 132 | |
| 133 | For every segment we adopt the following header: |
| 134 | |
| 135 | 1 byte reserved (always 0) |
| 136 | 1 byte flags (see below) |
| 137 | [4 byte frame length] (optional, see below) |
| 138 | ---Next, the per-segment ALAC parameters--- |
| 139 | 1 byte mixBits (middle-side parameter) |
| 140 | 1 byte mixRes (middle-side parameter, interpreted as signed char) |
| 141 | |
| 142 | 1 byte shiftU (4 bits modeU, 4 bits denShiftU) |
| 143 | 1 byte filterU (3 bits pbFactorU, 5 bits numU) |
| 144 | (numU) shorts (signed DP coefficients for V channel) |
| 145 | ---Next, 2nd-channel ALAC parameters in case of stereo mode--- |
| 146 | 1 byte shiftV (4 bits modeV, 4 bits denShiftV) |
| 147 | 1 byte filterV (3 bits pbFactorV, 5 bits numV) |
| 148 | (numV) shorts (signed DP coefficients for V channel) |
| 149 | ---After this come the shift-off bytes for (>= 24)-bit data (n-byte shift) if indicated--- |
| 150 | ---Then comes the AG-compressor bitstream--- |
| 151 | |
| 152 | |
| 153 | FLAGS |
| 154 | ----- |
| 155 | |
| 156 | The presence of certain flag bits changes the header format such that the parameters might |
| 157 | not even be sent. The currently defined flags format is: |
| 158 | |
| 159 | 0000psse |
| 160 | |
| 161 | where 0 = reserved, must be 0 |
| 162 | p = 1-bit field "partial frame" flag indicating 32-bit frame length follows this byte |
| 163 | ss = 2-bit field indicating "number of shift-off bytes ignored by compression" |
| 164 | e = 1-bit field indicating "escape" |
| 165 | |
| 166 | The "partial frame" flag means that the following segment is not equal to the frame length specified |
| 167 | in the out-of-band decoder configuration. This allows the decoder to deal with end-of-file partial |
| 168 | segments without incurring the 32-bit overhead for each segment. |
| 169 | |
| 170 | The "shift-off" field indicates the number of bytes at the bottom of the word that were passed through |
| 171 | uncompressed. The reason for this is that the entropy inherent in the LS bytes of >= 24-bit words |
| 172 | quite often means that the frame would have to be "escaped" b/c the compressed size would be >= the |
| 173 | uncompressed size. However, by shifting the input values down and running the remaining bits through |
| 174 | the normal compression algorithm, a net win can be achieved. If this field is non-zero, it means that |
| 175 | the shifted-off bytes follow after the parameter section of the header and before the compressed |
| 176 | bitstream. Note that doing this also allows us to use matrixing on 32-bit inputs after one or more |
| 177 | bytes are shifted off the bottom which helps the eventual compression ratio. For stereo channels, |
| 178 | the shifted off bytes are interleaved. |
| 179 | |
| 180 | The "escape" flag means that this segment was not compressed b/c the compressed size would be |
| 181 | >= uncompressed size. In that case, the audio data was passed through uncompressed after the header. |
| 182 | The other header parameter bytes will not be sent. |
| 183 | |
| 184 | |
| 185 | PARAMETERS |
| 186 | ---------- |
| 187 | |
| 188 | If the segment is not a partial or escape segment, the total header size (in bytes) is given exactly by: |
| 189 | |
| 190 | 4 + (2 + 2 * numU) (mono mode) |
| 191 | 4 + (2 + 2 * numV) + (2 + 2 * numV) (stereo mode) |
| 192 | |
| 193 | where the ALAC filter-lengths numU, numV are bounded by a |
| 194 | constant (in the current source, numU, numV <= NUMCOEPAIRS), and |
| 195 | this forces an absolute upper bound on header size. |
| 196 | |
| 197 | Each segment-decode process loads up these bytes from the front of the |
| 198 | local stream, in the above order, then follows with the entropy-encoded |
| 199 | bits for the given segment. |
| 200 | |
| 201 | To generalize middle-side, there are various mixing modes including middle-side, each lossless, |
| 202 | as embodied in the mix() and unmix() functions. These functions exploit a generalized middle-side |
| 203 | transformation: |
| 204 | |
| 205 | u := [(rL + (m-r)R)/m]; |
| 206 | v := L - R; |
| 207 | |
| 208 | where [ ] denotes integer floor. The (lossless) inverse is |
| 209 | |
| 210 | L = u + v - [rV/m]; |
| 211 | R = L - v; |
| 212 | |
| 213 | In the segment header, m and r are encoded in mixBits and mixRes. |
| 214 | Classical "middle-side" is obtained with m = 2, r = 1, but now |
| 215 | we have more generalized mixes. |
| 216 | |
| 217 | NOTES |
| 218 | ----- |
| 219 | The relevance of the ALAC coefficients is explained in detail |
| 220 | in patent documents. |
| 221 | */ |
| 222 | |
| 223 | /* |
| 224 | EncodeStereo() |
| 225 | - encode a channel pair |
| 226 | */ |
| 227 | static int32_t |
| 228 | EncodeStereo(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
| 229 | { |
| 230 | BitBuffer workBits; |
| 231 | BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet |
| 232 | AGParamRec agParams; |
| 233 | uint32_t bits1, bits2; |
| 234 | uint32_t dilate; |
| 235 | int32_t mixBits, mixRes, maxRes; |
| 236 | uint32_t minBits, minBits1, minBits2; |
| 237 | uint32_t numU, numV; |
| 238 | uint32_t mode; |
| 239 | uint32_t pbFactor; |
| 240 | uint32_t chanBits; |
| 241 | uint8_t bytesShifted; |
| 242 | SearchCoefs coefsU; |
| 243 | SearchCoefs coefsV; |
| 244 | uint32_t indx; |
| 245 | uint8_t partialFrame; |
| 246 | uint32_t escapeBits; |
| 247 | bool doEscape; |
| 248 | int32_t status = ALAC_noErr; |
| 249 | int32_t bestRes; |
| 250 | uint32_t numUV, converge; |
| 251 | |
| 252 | // make sure we handle this bit-depth before we get going |
| 253 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
| 254 | |
| 255 | // reload coefs pointers for this channel pair |
| 256 | // - note that, while you might think they should be re-initialized per block, retaining state across blocks |
| 257 | // actually results in better overall compression |
| 258 | // - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using |
| 259 | // different coefs for the different passes of "mixRes" results in even better compression |
| 260 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
| 261 | coefsV = (SearchCoefs) p->mCoefsV[channelIndex]; |
| 262 | |
| 263 | // matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many |
| 264 | // so enable 16-bit "shift off" and encode in 17-bit mode |
| 265 | // - in addition, 24-bit mode really improves with one byte shifted off |
| 266 | if ( p->mBitDepth == 32 ) |
| 267 | bytesShifted = 2; |
| 268 | else if ( p->mBitDepth >= 24 ) |
| 269 | bytesShifted = 1; |
| 270 | else |
| 271 | bytesShifted = 0; |
| 272 | |
| 273 | chanBits = p->mBitDepth - (bytesShifted * 8) + 1; |
| 274 | |
| 275 | // flag whether or not this is a partial frame |
| 276 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
| 277 | |
| 278 | // brute-force encode optimization loop |
| 279 | // - run over variations of the encoding params to find the best choice |
| 280 | mixBits = kDefaultMixBits; |
| 281 | maxRes = kMaxRes; |
| 282 | numU = numV = kDefaultNumUV; |
| 283 | mode = 0; |
| 284 | pbFactor = 4; |
| 285 | dilate = 8; |
| 286 | |
| 287 | minBits = minBits1 = minBits2 = 1ul << 31; |
Value stored to 'minBits' is never read | |
| 288 | |
| 289 | bestRes = p->mLastMixRes[channelIndex]; |
| 290 | |
| 291 | for ( mixRes = 0; mixRes <= maxRes; mixRes++ ) |
| 292 | { |
| 293 | // mix the stereo inputs |
| 294 | switch ( p->mBitDepth ) |
| 295 | { |
| 296 | case 16: |
| 297 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, mixBits, mixRes ); |
| 298 | break; |
| 299 | case 20: |
| 300 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, mixBits, mixRes ); |
| 301 | break; |
| 302 | case 24: |
| 303 | // includes extraction of shifted-off bytes |
| 304 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, |
| 305 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 306 | break; |
| 307 | case 32: |
| 308 | // includes extraction of shifted-off bytes |
| 309 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, |
| 310 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 311 | break; |
| 312 | } |
| 313 | |
| 314 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
| 315 | |
| 316 | // run the dynamic predictors |
| 317 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 318 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples/dilate, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
| 319 | |
| 320 | // run the lossless compressor on each channel |
| 321 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
| 322 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
| 323 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 324 | |
| 325 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
| 326 | status = dyn_comp( &agParams, p->mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 ); |
| 327 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 328 | |
| 329 | // look for best match |
| 330 | if ( (bits1 + bits2) < minBits1 ) |
| 331 | { |
| 332 | minBits1 = bits1 + bits2; |
| 333 | bestRes = mixRes; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | p->mLastMixRes[channelIndex] = (int16_t)bestRes; |
| 338 | |
| 339 | // mix the stereo inputs with the current best mixRes |
| 340 | mixRes = p->mLastMixRes[channelIndex]; |
| 341 | switch ( p->mBitDepth ) |
| 342 | { |
| 343 | case 16: |
| 344 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
| 345 | break; |
| 346 | case 20: |
| 347 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
| 348 | break; |
| 349 | case 24: |
| 350 | // also extracts the shifted off bytes into the shift buffers |
| 351 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
| 352 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 353 | break; |
| 354 | case 32: |
| 355 | // also extracts the shifted off bytes into the shift buffers |
| 356 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
| 357 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 358 | break; |
| 359 | } |
| 360 | |
| 361 | // now it's time for the predictor coefficient search loop |
| 362 | numU = numV = kMinUV; |
| 363 | minBits1 = minBits2 = 1ul << 31; |
| 364 | |
| 365 | for ( numUV = kMinUV; numUV <= kMaxUV; numUV += 4 ) |
| 366 | { |
| 367 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
| 368 | |
| 369 | dilate = 32; |
| 370 | |
| 371 | // run the predictor over the same data multiple times to help it converge |
| 372 | for ( converge = 0; converge < 8; converge++ ) |
| 373 | { |
| 374 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT9 ); |
| 375 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples/dilate, coefsV[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT9 ); |
| 376 | } |
| 377 | |
| 378 | dilate = 8; |
| 379 | |
| 380 | set_ag_params( &agParams, MB010, (pbFactor * PB040)/4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
| 381 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
| 382 | |
| 383 | if ( (bits1 * dilate + 16 * numUV) < minBits1 ) |
| 384 | { |
| 385 | minBits1 = bits1 * dilate + 16 * numUV; |
| 386 | numU = numUV; |
| 387 | } |
| 388 | |
| 389 | set_ag_params( &agParams, MB010, (pbFactor * PB040)/4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
| 390 | status = dyn_comp( &agParams, p->mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 ); |
| 391 | |
| 392 | if ( (bits2 * dilate + 16 * numUV) < minBits2 ) |
| 393 | { |
| 394 | minBits2 = bits2 * dilate + 16 * numUV; |
| 395 | numV = numUV; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
| 400 | minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
| 401 | if ( bytesShifted != 0 ) |
| 402 | minBits += (numSamples * (bytesShifted * 8) * 2); |
| 403 | |
| 404 | escapeBits = (numSamples * p->mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
| 405 | |
| 406 | doEscape = (minBits >= escapeBits) ? true : false; |
| 407 | |
| 408 | if ( doEscape == false ) |
| 409 | { |
| 410 | // write bitstream header and coefs |
| 411 | BitBufferWrite( bitstream, 0, 12 ); |
| 412 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
| 413 | if ( partialFrame ) |
| 414 | BitBufferWrite( bitstream, numSamples, 32 ); |
| 415 | BitBufferWrite( bitstream, mixBits, 8 ); |
| 416 | BitBufferWrite( bitstream, mixRes, 8 ); |
| 417 | |
| 418 | //Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) ); |
| 419 | //Assert( (pbFactor < 8) && (numU < 32) ); |
| 420 | //Assert( (pbFactor < 8) && (numV < 32) ); |
| 421 | |
| 422 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
| 423 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
| 424 | for ( indx = 0; indx < numU; indx++ ) |
| 425 | BitBufferWrite( bitstream, coefsU[numU - 1][indx], 16 ); |
| 426 | |
| 427 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
| 428 | BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 ); |
| 429 | for ( indx = 0; indx < numV; indx++ ) |
| 430 | BitBufferWrite( bitstream, coefsV[numV - 1][indx], 16 ); |
| 431 | |
| 432 | // if shift active, write the interleaved shift buffers |
| 433 | if ( bytesShifted != 0 ) |
| 434 | { |
| 435 | uint32_t bitShift = bytesShifted * 8; |
| 436 | |
| 437 | //Assert( bitShift <= 16 ); |
| 438 | |
| 439 | for ( indx = 0; indx < (numSamples * 2); indx += 2 ) |
| 440 | { |
| 441 | uint32_t shiftedVal; |
| 442 | |
| 443 | shiftedVal = ((uint32_t) p->mShiftBufferUV[indx + 0] << bitShift) | (uint32_t) p->mShiftBufferUV[indx + 1]; |
| 444 | BitBufferWrite( bitstream, shiftedVal, bitShift * 2 ); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | // run the dynamic predictor and lossless compression for the "left" channel |
| 449 | // - note: to avoid allocating more buffers, we're mixing and matching between the available buffers instead |
| 450 | // of only using "U" buffers for the U-channel and "V" buffers for the V-channel |
| 451 | if ( mode == 0 ) |
| 452 | { |
| 453 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 454 | } |
| 455 | else |
| 456 | { |
| 457 | pc_block( p->mMixBufferU, p->mPredictorV, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 458 | pc_block( p->mPredictorV, p->mPredictorU, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
| 459 | } |
| 460 | |
| 461 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
| 462 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
| 463 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 464 | |
| 465 | // run the dynamic predictor and lossless compression for the "right" channel |
| 466 | if ( mode == 0 ) |
| 467 | { |
| 468 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
| 469 | } |
| 470 | else |
| 471 | { |
| 472 | pc_block( p->mMixBufferV, p->mPredictorU, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
| 473 | pc_block( p->mPredictorU, p->mPredictorV, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
| 474 | } |
| 475 | |
| 476 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
| 477 | status = dyn_comp( &agParams, p->mPredictorV, bitstream, numSamples, chanBits, &bits2 ); |
| 478 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 479 | |
| 480 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
| 481 | chuck it and do an escape packet |
| 482 | */ |
| 483 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
| 484 | if ( minBits >= escapeBits ) |
| 485 | { |
| 486 | *bitstream = startBits; // reset bitstream state |
| 487 | doEscape = true; |
| 488 | printf( "compressed frame too big: %u vs. %u \n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u \n" , minBits, escapeBits); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if ( doEscape == true ) |
| 493 | { |
| 494 | /* escape */ |
| 495 | status = EncodeStereoEscape(p, bitstream, inputBuffer, stride, numSamples ); |
| 496 | |
| 497 | #if VERBOSE_DEBUG0 |
| 498 | DebugMsg( "escape!: %u vs %u\n", minBits, escapeBits )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, escapeBits ); |
| 499 | #endif |
| 500 | } |
| 501 | |
| 502 | Exit: |
| 503 | return status; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | EncodeStereoFast() |
| 508 | - encode a channel pair without the search loop for maximum possible speed |
| 509 | */ |
| 510 | static int32_t |
| 511 | EncodeStereoFast(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
| 512 | { |
| 513 | BitBuffer startBits = *bitstream; // squirrel away current bit position in case we decide to use escape hatch |
| 514 | AGParamRec agParams; |
| 515 | uint32_t bits1, bits2; |
| 516 | int32_t mixBits, mixRes; |
| 517 | uint32_t minBits, minBits1, minBits2; |
| 518 | uint32_t numU, numV; |
| 519 | uint32_t mode; |
| 520 | uint32_t pbFactor; |
| 521 | uint32_t chanBits; |
| 522 | uint8_t bytesShifted; |
| 523 | SearchCoefs coefsU; |
| 524 | SearchCoefs coefsV; |
| 525 | uint32_t indx; |
| 526 | uint8_t partialFrame; |
| 527 | uint32_t escapeBits; |
| 528 | bool doEscape; |
| 529 | int32_t status; |
| 530 | |
| 531 | // make sure we handle this bit-depth before we get going |
| 532 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
| 533 | |
| 534 | // reload coefs pointers for this channel pair |
| 535 | // - note that, while you might think they should be re-initialized per block, retaining state across blocks |
| 536 | // actually results in better overall compression |
| 537 | // - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using |
| 538 | // different coefs for the different passes of "mixRes" results in even better compression |
| 539 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
| 540 | coefsV = (SearchCoefs) p->mCoefsV[channelIndex]; |
| 541 | |
| 542 | // matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many |
| 543 | // so enable 16-bit "shift off" and encode in 17-bit mode |
| 544 | // - in addition, 24-bit mode really improves with one byte shifted off |
| 545 | if ( p->mBitDepth == 32 ) |
| 546 | bytesShifted = 2; |
| 547 | else if ( p->mBitDepth >= 24 ) |
| 548 | bytesShifted = 1; |
| 549 | else |
| 550 | bytesShifted = 0; |
| 551 | |
| 552 | chanBits = p->mBitDepth - (bytesShifted * 8) + 1; |
| 553 | |
| 554 | // flag whether or not this is a partial frame |
| 555 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
| 556 | |
| 557 | // set up default encoding parameters for "fast" mode |
| 558 | mixBits = kDefaultMixBits; |
| 559 | mixRes = kDefaultMixRes; |
| 560 | numU = numV = kDefaultNumUV; |
| 561 | mode = 0; |
| 562 | pbFactor = 4; |
| 563 | |
| 564 | minBits = minBits1 = minBits2 = 1ul << 31; |
| 565 | |
| 566 | // mix the stereo inputs with default mixBits/mixRes |
| 567 | switch ( p->mBitDepth ) |
| 568 | { |
| 569 | case 16: |
| 570 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
| 571 | break; |
| 572 | case 20: |
| 573 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
| 574 | break; |
| 575 | case 24: |
| 576 | // also extracts the shifted off bytes into the shift buffers |
| 577 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
| 578 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 579 | break; |
| 580 | case 32: |
| 581 | // also extracts the shifted off bytes into the shift buffers |
| 582 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
| 583 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
| 584 | break; |
| 585 | } |
| 586 | |
| 587 | /* speculatively write the bitstream assuming the compressed version will be smaller */ |
| 588 | |
| 589 | // write bitstream header and coefs |
| 590 | BitBufferWrite( bitstream, 0, 12 ); |
| 591 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
| 592 | if ( partialFrame ) |
| 593 | BitBufferWrite( bitstream, numSamples, 32 ); |
| 594 | BitBufferWrite( bitstream, mixBits, 8 ); |
| 595 | BitBufferWrite( bitstream, mixRes, 8 ); |
| 596 | |
| 597 | //Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) ); |
| 598 | //Assert( (pbFactor < 8) && (numU < 32) ); |
| 599 | //Assert( (pbFactor < 8) && (numV < 32) ); |
| 600 | |
| 601 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
| 602 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
| 603 | for ( indx = 0; indx < numU; indx++ ) |
| 604 | BitBufferWrite( bitstream, coefsU[numU - 1][indx], 16 ); |
| 605 | |
| 606 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
| 607 | BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 ); |
| 608 | for ( indx = 0; indx < numV; indx++ ) |
| 609 | BitBufferWrite( bitstream, coefsV[numV - 1][indx], 16 ); |
| 610 | |
| 611 | // if shift active, write the interleaved shift buffers |
| 612 | if ( bytesShifted != 0 ) |
| 613 | { |
| 614 | uint32_t bitShift = bytesShifted * 8; |
| 615 | |
| 616 | //Assert( bitShift <= 16 ); |
| 617 | |
| 618 | for ( indx = 0; indx < (numSamples * 2); indx += 2 ) |
| 619 | { |
| 620 | uint32_t shiftedVal; |
| 621 | |
| 622 | shiftedVal = ((uint32_t) p->mShiftBufferUV[indx + 0] << bitShift) | (uint32_t) p->mShiftBufferUV[indx + 1]; |
| 623 | BitBufferWrite( bitstream, shiftedVal, bitShift * 2 ); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | // run the dynamic predictor and lossless compression for the "left" channel |
| 628 | // - note: we always use mode 0 in the "fast" path so we don't need the code for mode != 0 |
| 629 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 630 | |
| 631 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
| 632 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
| 633 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 634 | |
| 635 | // run the dynamic predictor and lossless compression for the "right" channel |
| 636 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
| 637 | |
| 638 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
| 639 | status = dyn_comp( &agParams, p->mPredictorV, bitstream, numSamples, chanBits, &bits2 ); |
| 640 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 641 | |
| 642 | // do bit requirement calculations |
| 643 | minBits1 = bits1 + (numU * sizeof(int16_t) * 8); |
| 644 | minBits2 = bits2 + (numV * sizeof(int16_t) * 8); |
| 645 | |
| 646 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
| 647 | minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
| 648 | if ( bytesShifted != 0 ) |
| 649 | minBits += (numSamples * (bytesShifted * 8) * 2); |
| 650 | |
| 651 | escapeBits = (numSamples * p->mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
| 652 | |
| 653 | doEscape = (minBits >= escapeBits) ? true : false; |
| 654 | |
| 655 | if ( doEscape == false ) |
| 656 | { |
| 657 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
| 658 | chuck it and do an escape packet |
| 659 | */ |
| 660 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
| 661 | if ( minBits >= escapeBits ) |
| 662 | { |
| 663 | doEscape = true; |
| 664 | printf( "compressed frame too big: %u vs. %u\n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u\n", minBits, escapeBits); |
| 665 | } |
| 666 | |
| 667 | } |
| 668 | |
| 669 | if ( doEscape == true ) |
| 670 | { |
| 671 | /* escape */ |
| 672 | |
| 673 | // reset bitstream position since we speculatively wrote the compressed version |
| 674 | *bitstream = startBits; |
| 675 | |
| 676 | // write escape frame |
| 677 | status = EncodeStereoEscape(p, bitstream, inputBuffer, stride, numSamples ); |
| 678 | |
| 679 | #if VERBOSE_DEBUG0 |
| 680 | DebugMsg( "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth * 2) )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth * 2)); |
| 681 | #endif |
| 682 | } |
| 683 | |
| 684 | Exit: |
| 685 | return status; |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | EncodeStereoEscape() |
| 690 | - encode stereo escape frame |
| 691 | */ |
| 692 | static int32_t |
| 693 | EncodeStereoEscape(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t numSamples ) |
| 694 | { |
| 695 | uint8_t partialFrame; |
| 696 | uint32_t indx; |
| 697 | |
| 698 | // flag whether or not this is a partial frame |
| 699 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
| 700 | |
| 701 | // write bitstream header |
| 702 | BitBufferWrite( bitstream, 0, 12 ); |
| 703 | BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed" |
| 704 | if ( partialFrame ) |
| 705 | BitBufferWrite( bitstream, numSamples, 32 ); |
| 706 | |
| 707 | // just copy the input data to the output buffer |
| 708 | switch ( p->mBitDepth ) |
| 709 | { |
| 710 | case 16: |
| 711 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 712 | { |
| 713 | BitBufferWrite( bitstream, inputBuffer[indx + 0] >> 16, 16 ); |
| 714 | BitBufferWrite( bitstream, inputBuffer[indx + 1] >> 16, 16 ); |
| 715 | } |
| 716 | break; |
| 717 | case 20: |
| 718 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 719 | { |
| 720 | BitBufferWrite( bitstream, inputBuffer[indx + 0] >> 12, 16 ); |
| 721 | BitBufferWrite( bitstream, inputBuffer[indx + 1] >> 12, 16 ); |
| 722 | } |
| 723 | break; |
| 724 | case 24: |
| 725 | // mix24() with mixres param = 0 means de-interleave so use it to simplify things |
| 726 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, 0, 0, p->mShiftBufferUV, 0 ); |
| 727 | for ( indx = 0; indx < numSamples; indx++ ) |
| 728 | { |
| 729 | BitBufferWrite( bitstream, p->mMixBufferU[indx] >> 8, 24 ); |
| 730 | BitBufferWrite( bitstream, p->mMixBufferV[indx] >> 8, 24 ); |
| 731 | } |
| 732 | break; |
| 733 | case 32: |
| 734 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 735 | { |
| 736 | BitBufferWrite( bitstream, inputBuffer[indx + 0], 32 ); |
| 737 | BitBufferWrite( bitstream, inputBuffer[indx + 1], 32 ); |
| 738 | } |
| 739 | break; |
| 740 | } |
| 741 | |
| 742 | return ALAC_noErr; |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | EncodeMono() |
| 747 | - encode a mono input buffer |
| 748 | */ |
| 749 | static int32_t |
| 750 | EncodeMono(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
| 751 | { |
| 752 | BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet |
| 753 | AGParamRec agParams; |
| 754 | uint32_t bits1; |
| 755 | uint32_t numU; |
| 756 | SearchCoefs coefsU; |
| 757 | uint32_t dilate; |
| 758 | uint32_t minBits, bestU; |
| 759 | uint32_t minU, maxU; |
| 760 | uint32_t indx, indx2; |
| 761 | uint8_t bytesShifted; |
| 762 | uint32_t shift; |
| 763 | uint32_t mask; |
| 764 | uint32_t chanBits; |
| 765 | uint8_t pbFactor; |
| 766 | uint8_t partialFrame; |
| 767 | uint32_t escapeBits; |
| 768 | bool doEscape; |
| 769 | int32_t status = ALAC_noErr; |
| 770 | uint32_t converge; |
| 771 | |
| 772 | |
| 773 | // make sure we handle this bit-depth before we get going |
| 774 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
| 775 | |
| 776 | // reload coefs array from previous frame |
| 777 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
| 778 | |
| 779 | // pick bit depth for actual encoding |
| 780 | // - we lop off the lower byte(s) for 24-/32-bit encodings |
| 781 | if ( p->mBitDepth == 32 ) |
| 782 | bytesShifted = 2; |
| 783 | else if ( p->mBitDepth >= 24 ) |
| 784 | bytesShifted = 1; |
| 785 | else |
| 786 | bytesShifted = 0; |
| 787 | |
| 788 | shift = bytesShifted * 8; |
| 789 | mask = (1ul << shift) - 1; |
| 790 | chanBits = p->mBitDepth - (bytesShifted * 8); |
| 791 | |
| 792 | // flag whether or not this is a partial frame |
| 793 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
| 794 | |
| 795 | // convert N-bit data to 32-bit for predictor |
| 796 | switch ( p->mBitDepth ) |
| 797 | { |
| 798 | case 16: |
| 799 | // convert 16-bit data to 32-bit for predictor |
| 800 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
| 801 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 16; |
| 802 | break; |
| 803 | |
| 804 | case 20: |
| 805 | // convert 20-bit data to 32-bit for predictor |
| 806 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
| 807 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 12; |
| 808 | break; |
| 809 | case 24: |
| 810 | // convert 24-bit data to 32-bit for the predictor and extract the shifted off byte(s) |
| 811 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
| 812 | { |
| 813 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 8; |
| 814 | p->mShiftBufferUV[indx] = (uint16_t)(p->mMixBufferU[indx] & mask); |
| 815 | p->mMixBufferU[indx] >>= shift; |
| 816 | } |
| 817 | |
| 818 | break; |
| 819 | case 32: |
| 820 | // just copy the 32-bit input data for the predictor and extract the shifted off byte(s) |
| 821 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
| 822 | { |
| 823 | p->mShiftBufferUV[indx] = (uint16_t)(inputBuffer[indx2] & mask); |
| 824 | p->mMixBufferU[indx] = inputBuffer[indx2] >> shift; |
| 825 | } |
| 826 | break; |
| 827 | } |
| 828 | |
| 829 | // brute-force encode optimization loop (implied "encode depth" of 0 if comparing to cmd line tool) |
| 830 | // - run over variations of the encoding params to find the best choice |
| 831 | minU = 4; |
| 832 | maxU = 8; |
| 833 | minBits = 1ul << 31; |
| 834 | pbFactor = 4; |
| 835 | |
| 836 | bestU = minU; |
| 837 | |
| 838 | for ( numU = minU; numU <= maxU; numU += 4 ) |
| 839 | { |
| 840 | BitBuffer workBits; |
| 841 | uint32_t numBits; |
| 842 | |
| 843 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
| 844 | |
| 845 | dilate = 32; |
| 846 | for ( converge = 0; converge < 7; converge++ ) |
| 847 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 848 | |
| 849 | dilate = 8; |
| 850 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 851 | |
| 852 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
| 853 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
| 854 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 855 | |
| 856 | numBits = (dilate * bits1) + (16 * numU); |
| 857 | if ( numBits < minBits ) |
| 858 | { |
| 859 | bestU = numU; |
| 860 | minBits = numBits; |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
| 865 | // - first, add bits for the header bytes mixRes/maxRes/shiftU/filterU |
| 866 | minBits += (4 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
| 867 | if ( bytesShifted != 0 ) |
| 868 | minBits += (numSamples * (bytesShifted * 8)); |
| 869 | |
| 870 | escapeBits = (numSamples * p->mBitDepth) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
| 871 | |
| 872 | doEscape = (minBits >= escapeBits) ? true : false; |
| 873 | |
| 874 | if ( doEscape == false ) |
| 875 | { |
| 876 | // write bitstream header |
| 877 | BitBufferWrite( bitstream, 0, 12 ); |
| 878 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
| 879 | if ( partialFrame ) |
| 880 | BitBufferWrite( bitstream, numSamples, 32 ); |
| 881 | BitBufferWrite( bitstream, 0, 16 ); // mixBits = mixRes = 0 |
| 882 | |
| 883 | // write the params and predictor coefs |
| 884 | numU = bestU; |
| 885 | BitBufferWrite( bitstream, (0 << 4) | DENSHIFT_DEFAULT9, 8 ); // modeU = 0 |
| 886 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
| 887 | for ( indx = 0; indx < numU; indx++ ) |
| 888 | BitBufferWrite( bitstream, coefsU[numU-1][indx], 16 ); |
| 889 | |
| 890 | // if shift active, write the interleaved shift buffers |
| 891 | if ( bytesShifted != 0 ) |
| 892 | { |
| 893 | for ( indx = 0; indx < numSamples; indx++ ) |
| 894 | BitBufferWrite( bitstream, p->mShiftBufferUV[indx], shift ); |
| 895 | } |
| 896 | |
| 897 | // run the dynamic predictor with the best result |
| 898 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
| 899 | |
| 900 | // do lossless compression |
| 901 | set_standard_ag_params( &agParams, numSamples, numSamples ); |
| 902 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
| 903 | //AssertNoErr( status ); |
| 904 | |
| 905 | |
| 906 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
| 907 | chuck it and do an escape packet |
| 908 | */ |
| 909 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
| 910 | if ( minBits >= escapeBits ) |
| 911 | { |
| 912 | *bitstream = startBits; // reset bitstream state |
| 913 | doEscape = true; |
| 914 | printf( "compressed frame too big: %u vs. %u\n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u\n", minBits, escapeBits); |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | if ( doEscape == true ) |
| 919 | { |
| 920 | // write bitstream header and coefs |
| 921 | BitBufferWrite( bitstream, 0, 12 ); |
| 922 | BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed" |
| 923 | if ( partialFrame ) |
| 924 | BitBufferWrite( bitstream, numSamples, 32 ); |
| 925 | |
| 926 | // just copy the input data to the output buffer |
| 927 | switch ( p->mBitDepth ) |
| 928 | { |
| 929 | case 16: |
| 930 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 931 | BitBufferWrite( bitstream, inputBuffer[indx] >> 16, 16 ); |
| 932 | break; |
| 933 | case 20: |
| 934 | // convert 20-bit data to 32-bit for simplicity |
| 935 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 936 | BitBufferWrite( bitstream, inputBuffer[indx] >> 12, 20 ); |
| 937 | break; |
| 938 | case 24: |
| 939 | // convert 24-bit data to 32-bit for simplicity |
| 940 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
| 941 | { |
| 942 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 8; |
| 943 | BitBufferWrite( bitstream, p->mMixBufferU[indx], 24 ); |
| 944 | } |
| 945 | break; |
| 946 | case 32: |
| 947 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
| 948 | BitBufferWrite( bitstream, inputBuffer[indx], 32 ); |
| 949 | break; |
| 950 | } |
| 951 | #if VERBOSE_DEBUG0 |
| 952 | DebugMsg( "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth) )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth)); |
| 953 | #endif |
| 954 | } |
| 955 | |
| 956 | Exit: |
| 957 | return status; |
| 958 | } |
| 959 | |
| 960 | #if PRAGMA_MARK0 |
| 961 | #pragma mark - |
| 962 | #endif |
| 963 | |
| 964 | /* |
| 965 | Encode() |
| 966 | - encode the next block of samples |
| 967 | */ |
| 968 | int32_t |
| 969 | alac_encode(ALAC_ENCODER *p, uint32_t numChannels, uint32_t numSamples, |
| 970 | int32_t * theReadBuffer, unsigned char * theWriteBuffer, uint32_t * ioNumBytes) |
| 971 | { |
| 972 | uint32_t outputSize; |
| 973 | BitBuffer bitstream; |
| 974 | int32_t status; |
| 975 | |
| 976 | // create a bit buffer structure pointing to our output buffer |
| 977 | BitBufferInit( &bitstream, theWriteBuffer, p->mMaxOutputBytes ); |
| 978 | |
| 979 | if ( numChannels == 2 ) |
| 980 | { |
| 981 | // add 3-bit frame start tag ID_CPE = channel pair & 4-bit element instance tag = 0 |
| 982 | BitBufferWrite( &bitstream, ID_CPE, 3 ); |
| 983 | BitBufferWrite( &bitstream, 0, 4 ); |
| 984 | |
| 985 | // encode stereo input buffer |
| 986 | if ( p->mFastMode == false ) |
| 987 | status = EncodeStereo(p, &bitstream, theReadBuffer, 2, 0, numSamples ); |
| 988 | else |
| 989 | status = EncodeStereoFast(p, &bitstream, theReadBuffer, 2, 0, numSamples ); |
| 990 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 991 | } |
| 992 | else if ( numChannels == 1 ) |
| 993 | { |
| 994 | // add 3-bit frame start tag ID_SCE = mono channel & 4-bit element instance tag = 0 |
| 995 | BitBufferWrite( &bitstream, ID_SCE, 3 ); |
| 996 | BitBufferWrite( &bitstream, 0, 4 ); |
| 997 | |
| 998 | // encode mono input buffer |
| 999 | status = EncodeMono(p, &bitstream, theReadBuffer, 1, 0, numSamples ); |
| 1000 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 1001 | } |
| 1002 | else |
| 1003 | { |
| 1004 | int32_t * inputBuffer; |
| 1005 | uint32_t tag; |
| 1006 | uint32_t channelIndex; |
| 1007 | uint32_t inputIncrement; |
| 1008 | uint8_t stereoElementTag; |
| 1009 | uint8_t monoElementTag; |
| 1010 | uint8_t lfeElementTag; |
| 1011 | |
| 1012 | inputBuffer = theReadBuffer; |
| 1013 | inputIncrement = ((p->mBitDepth + 7) / 8); |
| 1014 | |
| 1015 | stereoElementTag = 0; |
| 1016 | monoElementTag = 0; |
| 1017 | lfeElementTag = 0; |
| 1018 | |
| 1019 | for ( channelIndex = 0; channelIndex < numChannels; ) |
| 1020 | { |
| 1021 | tag = (sChannelMaps[numChannels - 1] & (0x7ul << (channelIndex * 3))) >> (channelIndex * 3); |
| 1022 | |
| 1023 | BitBufferWrite( &bitstream, tag, 3 ); |
| 1024 | switch ( tag ) |
| 1025 | { |
| 1026 | case ID_SCE: |
| 1027 | // mono |
| 1028 | BitBufferWrite( &bitstream, monoElementTag, 4 ); |
| 1029 | |
| 1030 | status = EncodeMono(p, &bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
| 1031 | |
| 1032 | inputBuffer += inputIncrement; |
| 1033 | channelIndex++; |
| 1034 | monoElementTag++; |
| 1035 | break; |
| 1036 | |
| 1037 | case ID_CPE: |
| 1038 | // stereo |
| 1039 | BitBufferWrite( &bitstream, stereoElementTag, 4 ); |
| 1040 | |
| 1041 | status = EncodeStereo(p,&bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
| 1042 | |
| 1043 | inputBuffer += (inputIncrement * 2); |
| 1044 | channelIndex += 2; |
| 1045 | stereoElementTag++; |
| 1046 | break; |
| 1047 | |
| 1048 | case ID_LFE: |
| 1049 | // LFE channel (subwoofer) |
| 1050 | BitBufferWrite( &bitstream, lfeElementTag, 4 ); |
| 1051 | |
| 1052 | status = EncodeMono(p, &bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
| 1053 | |
| 1054 | inputBuffer += inputIncrement; |
| 1055 | channelIndex++; |
| 1056 | lfeElementTag++; |
| 1057 | break; |
| 1058 | |
| 1059 | default: |
| 1060 | printf( "That ain't right! (%u)\n", tag )__printf_chk (2 - 1, "That ain't right! (%u)\n", tag); |
| 1061 | status = kALAC_ParamError; |
| 1062 | goto Exit; |
| 1063 | } |
| 1064 | |
| 1065 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | #if VERBOSE_DEBUG0 |
| 1070 | { |
| 1071 | // if there is room left in the output buffer, add some random fill data to test decoder |
| 1072 | int32_t bitsLeft; |
| 1073 | int32_t bytesLeft; |
| 1074 | |
| 1075 | bitsLeft = BitBufferGetPosition( &bitstream ) - 3; // - 3 for ID_END tag |
| 1076 | bytesLeft = bitstream.byteSize - ((bitsLeft + 7) / 8); |
| 1077 | |
| 1078 | if ( (bytesLeft > 20) && ((bytesLeft & 0x4u) != 0) ) |
| 1079 | AddFiller( &bitstream, bytesLeft ); |
| 1080 | } |
| 1081 | #endif |
| 1082 | |
| 1083 | // add 3-bit frame end tag: ID_END |
| 1084 | BitBufferWrite( &bitstream, ID_END, 3 ); |
| 1085 | |
| 1086 | // byte-align the output data |
| 1087 | BitBufferByteAlign( &bitstream, true ); |
| 1088 | |
| 1089 | outputSize = BitBufferGetPosition( &bitstream ) / 8; |
| 1090 | //Assert( outputSize <= mMaxOutputBytes ); |
| 1091 | |
| 1092 | |
| 1093 | // all good, let iTunes know what happened and remember the total number of input sample frames |
| 1094 | *ioNumBytes = outputSize; |
| 1095 | //mEncodedFrames += encodeMsg->numInputSamples; |
| 1096 | |
| 1097 | // gather encoding stats |
| 1098 | p->mTotalBytesGenerated += outputSize; |
| 1099 | p->mMaxFrameBytes = MAX( p->mMaxFrameBytes, outputSize )( (p->mMaxFrameBytes)>(outputSize) ?(p->mMaxFrameBytes ): (outputSize) ); |
| 1100 | |
| 1101 | status = ALAC_noErr; |
| 1102 | |
| 1103 | Exit: |
| 1104 | return status; |
| 1105 | } |
| 1106 | |
| 1107 | |
| 1108 | #if PRAGMA_MARK0 |
| 1109 | #pragma mark - |
| 1110 | #endif |
| 1111 | |
| 1112 | /* |
| 1113 | GetConfig() |
| 1114 | */ |
| 1115 | void |
| 1116 | GetConfig(ALAC_ENCODER *p, ALACSpecificConfig * config ) |
| 1117 | { |
| 1118 | config->frameLength = Swap32NtoB(p->mFrameSize)ENDSWAP_32 (p->mFrameSize); |
| 1119 | config->compatibleVersion = (uint8_t) kALACCompatibleVersion; |
| 1120 | config->bitDepth = (uint8_t) p->mBitDepth; |
| 1121 | config->pb = (uint8_t) PB040; |
| 1122 | config->kb = (uint8_t) KB014; |
| 1123 | config->mb = (uint8_t) MB010; |
| 1124 | config->numChannels = (uint8_t) p->mNumChannels; |
| 1125 | config->maxRun = Swap16NtoB((uint16_t) MAX_RUN_DEFAULT)ENDSWAP_16 ((uint16_t) 255); |
| 1126 | config->maxFrameBytes = Swap32NtoB(p->mMaxFrameBytes)ENDSWAP_32 (p->mMaxFrameBytes); |
| 1127 | config->avgBitRate = Swap32NtoB(p->mAvgBitRate)ENDSWAP_32 (p->mAvgBitRate); |
| 1128 | config->sampleRate = Swap32NtoB(p->mOutputSampleRate)ENDSWAP_32 (p->mOutputSampleRate); |
| 1129 | } |
| 1130 | |
| 1131 | uint32_t |
| 1132 | alac_get_magic_cookie_size(uint32_t inNumChannels) |
| 1133 | { |
| 1134 | if (inNumChannels > 2) |
| 1135 | { |
| 1136 | return sizeof(ALACSpecificConfig) + kChannelAtomSize12 + sizeof(ALACAudioChannelLayout); |
| 1137 | } |
| 1138 | else |
| 1139 | { |
| 1140 | return sizeof(ALACSpecificConfig); |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | void |
| 1145 | alac_get_magic_cookie(ALAC_ENCODER *p, void * outCookie, uint32_t * ioSize ) |
| 1146 | { |
| 1147 | ALACSpecificConfig theConfig = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| 1148 | ALACAudioChannelLayout theChannelLayout = {0, 0, 0}; |
| 1149 | uint8_t theChannelAtom[kChannelAtomSize12] = {0, 0, 0, 0, 'c', 'h', 'a', 'n', 0, 0, 0, 0}; |
| 1150 | uint32_t theCookieSize = sizeof(ALACSpecificConfig); |
| 1151 | uint8_t * theCookiePointer = (uint8_t *)outCookie; |
| 1152 | |
| 1153 | GetConfig(p, &theConfig); |
| 1154 | if (theConfig.numChannels > 2) |
| 1155 | { |
| 1156 | theChannelLayout.mChannelLayoutTag = Swap32NtoB(ALACChannelLayoutTags[theConfig.numChannels - 1])ENDSWAP_32 (ALACChannelLayoutTags[theConfig.numChannels - 1]); |
| 1157 | theCookieSize += (sizeof(ALACAudioChannelLayout) + kChannelAtomSize12); |
| 1158 | } |
| 1159 | if (*ioSize >= theCookieSize) |
| 1160 | { |
| 1161 | memcpy(theCookiePointer, &theConfig, sizeof(ALACSpecificConfig)); |
| 1162 | theChannelAtom[3] = (sizeof(ALACAudioChannelLayout) + kChannelAtomSize12); |
| 1163 | if (theConfig.numChannels > 2) |
| 1164 | { |
| 1165 | theCookiePointer += sizeof(ALACSpecificConfig); |
| 1166 | memcpy(theCookiePointer, theChannelAtom, kChannelAtomSize12); |
| 1167 | theCookiePointer += kChannelAtomSize12; |
| 1168 | memcpy(theCookiePointer, &theChannelLayout, sizeof(ALACAudioChannelLayout)); |
| 1169 | } |
| 1170 | *ioSize = theCookieSize; |
| 1171 | } |
| 1172 | else |
| 1173 | { |
| 1174 | *ioSize = 0; // no incomplete cookies |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | alac_encoder_init() |
| 1180 | - initialize the encoder component with the current config |
| 1181 | */ |
| 1182 | int32_t |
| 1183 | alac_encoder_init (ALAC_ENCODER *p, uint32_t samplerate, uint32_t channels, uint32_t format_flags, uint32_t frameSize) |
| 1184 | { |
| 1185 | int32_t status; |
| 1186 | uint32_t indx; |
| 1187 | int32_t channel, search; |
| 1188 | |
| 1189 | p->mFrameSize = (frameSize > 0 && frameSize <= ALAC_FRAME_LENGTH4096) ? frameSize : ALAC_FRAME_LENGTH4096 ; |
| 1190 | |
| 1191 | p->mOutputSampleRate = samplerate; |
| 1192 | p->mNumChannels = channels; |
| 1193 | switch (format_flags) |
| 1194 | { |
| 1195 | case 1: |
| 1196 | p->mBitDepth = 16; |
| 1197 | break; |
| 1198 | case 2: |
| 1199 | p->mBitDepth = 20; |
| 1200 | break; |
| 1201 | case 3: |
| 1202 | p->mBitDepth = 24; |
| 1203 | break; |
| 1204 | case 4: |
| 1205 | p->mBitDepth = 32; |
| 1206 | break; |
| 1207 | default: |
| 1208 | break; |
| 1209 | } |
| 1210 | |
| 1211 | // set up default encoding parameters and state |
| 1212 | // - note: mFrameSize is set in the constructor or via alac_set_frame_size() which must be called before this routine |
| 1213 | for ( indx = 0; indx < kALACMaxChannels; indx++ ) |
| 1214 | p->mLastMixRes[indx] = kDefaultMixRes; |
| 1215 | |
| 1216 | // the maximum output frame size can be no bigger than (samplesPerBlock * numChannels * ((10 + sampleSize)/8) + 1) |
| 1217 | // but note that this can be bigger than the input size! |
| 1218 | // - since we don't yet know what our input format will be, use our max allowed sample size in the calculation |
| 1219 | p->mMaxOutputBytes = p->mFrameSize * p->mNumChannels * ((10 + kMaxSampleSize) / 8) + 1; |
| 1220 | |
| 1221 | status = ALAC_noErr; |
| 1222 | |
| 1223 | // initialize coefs arrays once b/c retaining state across blocks actually improves the encode ratio |
| 1224 | for ( channel = 0; channel < (int32_t) p->mNumChannels; channel++ ) |
| 1225 | { |
| 1226 | for ( search = 0; search < kALACMaxSearches; search++ ) |
| 1227 | { |
| 1228 | init_coefs( p->mCoefsU[channel][search], DENSHIFT_DEFAULT9, kALACMaxCoefs ); |
| 1229 | init_coefs( p->mCoefsV[channel][search], DENSHIFT_DEFAULT9, kALACMaxCoefs ); |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | return status; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | alac_get_source_format() |
| 1238 | - given the input format, return one of our supported formats |
| 1239 | */ |
| 1240 | void |
| 1241 | alac_get_source_format(ALAC_ENCODER *p, const AudioFormatDescription * source, AudioFormatDescription * output ) |
| 1242 | { |
| 1243 | (void) output ; |
| 1244 | // default is 16-bit native endian |
| 1245 | // - note: for float input we assume that's coming from one of our decoders (mp3, aac) so it only makes sense |
| 1246 | // to encode to 16-bit since the source was lossy in the first place |
| 1247 | // - note: if not a supported bit depth, find the closest supported bit depth to the input one |
| 1248 | if ( (source->mFormatID != kALACFormatLinearPCM) || ((source->mFormatFlags & kALACFormatFlagIsFloat) != 0) || |
| 1249 | ( source->mBitsPerChannel <= 16 ) ) |
| 1250 | p->mBitDepth = 16; |
| 1251 | else if ( source->mBitsPerChannel <= 20 ) |
| 1252 | p->mBitDepth = 20; |
| 1253 | else if ( source->mBitsPerChannel <= 24 ) |
| 1254 | p->mBitDepth = 24; |
| 1255 | else |
| 1256 | p->mBitDepth = 32; |
| 1257 | |
| 1258 | // we support 16/20/24/32-bit integer data at any sample rate and our target number of channels |
| 1259 | // and sample rate were specified when we were configured |
| 1260 | /* |
| 1261 | MakeUncompressedAudioFormat( mNumChannels, (float) mOutputSampleRate, mBitDepth, kAudioFormatFlagsNativeIntegerPacked, output ); |
| 1262 | */ |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | |
| 1267 | #if VERBOSE_DEBUG0 |
| 1268 | |
| 1269 | #if PRAGMA_MARK0 |
| 1270 | #pragma mark - |
| 1271 | #endif |
| 1272 | |
| 1273 | /* |
| 1274 | AddFiller() |
| 1275 | - add fill and data stream elements to the bitstream to test the decoder |
| 1276 | */ |
| 1277 | static void AddFiller( BitBuffer * bits, int32_t numBytes ) |
| 1278 | { |
| 1279 | uint8_t tag; |
| 1280 | int32_t indx; |
| 1281 | |
| 1282 | // out of lameness, subtract 6 bytes to deal with header + alignment as required for fill/data elements |
| 1283 | numBytes -= 6; |
| 1284 | if ( numBytes <= 0 ) |
| 1285 | return; |
| 1286 | |
| 1287 | // randomly pick Fill or Data Stream Element based on numBytes requested |
| 1288 | tag = (numBytes & 0x8) ? ID_FIL : ID_DSE; |
| 1289 | |
| 1290 | BitBufferWrite( bits, tag, 3 ); |
| 1291 | if ( tag == ID_FIL ) |
| 1292 | { |
| 1293 | // can't write more than 269 bytes in a fill element |
| 1294 | numBytes = (numBytes > 269) ? 269 : numBytes; |
| 1295 | |
| 1296 | // fill element = 4-bit size unless >= 15 then 4-bit size + 8-bit extension size |
| 1297 | if ( numBytes >= 15 ) |
| 1298 | { |
| 1299 | uint16_t extensionSize; |
| 1300 | |
| 1301 | BitBufferWrite( bits, 15, 4 ); |
| 1302 | |
| 1303 | // 8-bit extension count field is "extra + 1" which is weird but I didn't define the syntax |
| 1304 | // - otherwise, there's no way to represent 15 |
| 1305 | // - for example, to really mean 15 bytes you must encode extensionSize = 1 |
| 1306 | // - why it's not like data stream elements I have no idea |
| 1307 | extensionSize = (numBytes - 15) + 1; |
| 1308 | //Assert( extensionSize <= 255 ); |
| 1309 | BitBufferWrite( bits, extensionSize, 8 ); |
| 1310 | } |
| 1311 | else |
| 1312 | BitBufferWrite( bits, numBytes, 4 ); |
| 1313 | |
| 1314 | BitBufferWrite( bits, 0x10, 8 ); // extension_type = FILL_DATA = b0001 or'ed with fill_nibble = b0000 |
| 1315 | for ( indx = 0; indx < (numBytes - 1); indx++ ) |
| 1316 | BitBufferWrite( bits, 0xa5, 8 ); // fill_byte = b10100101 = 0xa5 |
| 1317 | } |
| 1318 | else |
| 1319 | { |
| 1320 | // can't write more than 510 bytes in a data stream element |
| 1321 | numBytes = (numBytes > 510) ? 510 : numBytes; |
| 1322 | |
| 1323 | BitBufferWrite( bits, 0, 4 ); // element instance tag |
| 1324 | BitBufferWrite( bits, 1, 1 ); // byte-align flag = true |
| 1325 | |
| 1326 | // data stream element = 8-bit size unless >= 255 then 8-bit size + 8-bit size |
| 1327 | if ( numBytes >= 255 ) |
| 1328 | { |
| 1329 | BitBufferWrite( bits, 255, 8 ); |
| 1330 | BitBufferWrite( bits, numBytes - 255, 8 ); |
| 1331 | } |
| 1332 | else |
| 1333 | BitBufferWrite( bits, numBytes, 8 ); |
| 1334 | |
| 1335 | BitBufferByteAlign( bits, true ); // byte-align with zeros |
| 1336 | |
| 1337 | for ( indx = 0; indx < numBytes; indx++ ) |
| 1338 | BitBufferWrite( bits, 0x5a, 8 ); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | #endif /* VERBOSE_DEBUG */ |