File: | libs/apr/random/unix/sha2.c |
Location: | line 480, column 25 |
Description: | Value stored to 'usedspace' is never read |
1 | /* Licensed to the Apache Software Foundation (ASF) under one or more |
2 | * contributor license agreements. See the NOTICE file distributed with |
3 | * this work for additional information regarding copyright ownership. |
4 | * The ASF licenses this file to You under the Apache License, Version 2.0 |
5 | * (the "License"); you may not use this file except in compliance with |
6 | * the License. You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | */ |
16 | /* |
17 | * FILE: sha2.c |
18 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
19 | * |
20 | * A licence was granted to the ASF by Aaron on 4 November 2003. |
21 | */ |
22 | |
23 | #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ |
24 | #include <assert.h> /* assert() */ |
25 | #include "sha2.h" |
26 | |
27 | /* |
28 | * ASSERT NOTE: |
29 | * Some sanity checking code is included using assert(). On my FreeBSD |
30 | * system, this additional code can be removed by compiling with NDEBUG |
31 | * defined. Check your own systems manpage on assert() to see how to |
32 | * compile WITHOUT the sanity checking code on your system. |
33 | * |
34 | * UNROLLED TRANSFORM LOOP NOTE: |
35 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
36 | * loop version for the hash transform rounds (defined using macros |
37 | * later in this file). Either define on the command line, for example: |
38 | * |
39 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
40 | * |
41 | * or define below: |
42 | * |
43 | * #define SHA2_UNROLL_TRANSFORM |
44 | * |
45 | */ |
46 | |
47 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
48 | typedef apr_byte_t sha2_byte; /* Exactly 1 byte */ |
49 | typedef apr_uint32_t sha2_word32; /* Exactly 4 bytes */ |
50 | typedef apr_uint64_t sha2_word64; /* Exactly 8 bytes */ |
51 | |
52 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
53 | /* NOTE: Most of these are in sha2.h */ |
54 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) |
55 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) |
56 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) |
57 | |
58 | |
59 | /*** ENDIAN REVERSAL MACROS *******************************************/ |
60 | #if !APR_IS_BIGENDIAN0 |
61 | #define REVERSE32(w,x){ sha2_word32 tmp = (w); tmp = (tmp >> 16) | (tmp << 16); (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); } { \ |
62 | sha2_word32 tmp = (w); \ |
63 | tmp = (tmp >> 16) | (tmp << 16); \ |
64 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
65 | } |
66 | #define REVERSE64(w,x){ sha2_word64 tmp = (w); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ( (tmp & 0x00ff00ff00ff00ffUL) << 8); (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL ) << 16); } { \ |
67 | sha2_word64 tmp = (w); \ |
68 | tmp = (tmp >> 32) | (tmp << 32); \ |
69 | tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)0xff00ff00ff00ff00UL) >> 8) | \ |
70 | ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)0x00ff00ff00ff00ffUL) << 8); \ |
71 | (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)0xffff0000ffff0000UL) >> 16) | \ |
72 | ((tmp & APR_UINT64_C(0x0000ffff0000ffff)0x0000ffff0000ffffUL) << 16); \ |
73 | } |
74 | #endif /* !APR_IS_BIGENDIAN */ |
75 | |
76 | /* |
77 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
78 | * unsigned 128-bit integer (represented using a two-element array of |
79 | * 64-bit words): |
80 | */ |
81 | #define ADDINC128(w,n){ (w)[0] += (sha2_word64)(n); if ((w)[0] < (n)) { (w)[1]++ ; } } { \ |
82 | (w)[0] += (sha2_word64)(n); \ |
83 | if ((w)[0] < (n)) { \ |
84 | (w)[1]++; \ |
85 | } \ |
86 | } |
87 | |
88 | /* |
89 | * Macros for copying blocks of memory and for zeroing out ranges |
90 | * of memory. Using these macros makes it easy to switch from |
91 | * using memset()/memcpy() and using bzero()/bcopy(). |
92 | * |
93 | * Please define either SHA2_USE_MEMSET_MEMCPY or define |
94 | * SHA2_USE_BZERO_BCOPY depending on which function set you |
95 | * choose to use: |
96 | */ |
97 | #if !defined(SHA2_USE_MEMSET_MEMCPY1) && !defined(SHA2_USE_BZERO_BCOPY) |
98 | /* Default to memset()/memcpy() if no option is specified */ |
99 | #define SHA2_USE_MEMSET_MEMCPY1 1 |
100 | #endif |
101 | #if defined(SHA2_USE_MEMSET_MEMCPY1) && defined(SHA2_USE_BZERO_BCOPY) |
102 | /* Abort with an error if BOTH options are defined */ |
103 | #error Define either SHA2_USE_MEMSET_MEMCPY1 or SHA2_USE_BZERO_BCOPY, not both! |
104 | #endif |
105 | |
106 | #ifdef SHA2_USE_MEMSET_MEMCPY1 |
107 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) memset((p), 0, (l)) |
108 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) memcpy((d), (s), (l)) |
109 | #endif |
110 | #ifdef SHA2_USE_BZERO_BCOPY |
111 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) bzero((p), (l)) |
112 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) bcopy((s), (d), (l)) |
113 | #endif |
114 | |
115 | |
116 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
117 | /* |
118 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
119 | * |
120 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
121 | * S is a ROTATION) because the SHA-256/384/512 description document |
122 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
123 | * same "backwards" definition. |
124 | */ |
125 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
126 | #define R(b,x)((x) >> (b)) ((x) >> (b)) |
127 | /* 32-bit Rotate-right (used in SHA-256): */ |
128 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) |
129 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
130 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) |
131 | |
132 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
133 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) |
134 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
135 | |
136 | /* Four of six logical functions used in SHA-256: */ |
137 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) |
138 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) |
139 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) |
140 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) |
141 | |
142 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
143 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) |
144 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) |
145 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) |
146 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) |
147 | |
148 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
149 | /* NOTE: These should not be accessed directly from outside this |
150 | * library -- they are intended for private internal visibility/use |
151 | * only. |
152 | */ |
153 | void apr__SHA512_Last(SHA512_CTX*); |
154 | void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*); |
155 | void apr__SHA512_Transform(SHA512_CTX*, const sha2_word64*); |
156 | |
157 | |
158 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
159 | /* Hash constant words K for SHA-256: */ |
160 | const static sha2_word32 K256[64] = { |
161 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
162 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
163 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
164 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
165 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
166 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
167 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
168 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
169 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
170 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
171 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
172 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
173 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
174 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
175 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
176 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
177 | }; |
178 | |
179 | /* Initial hash value H for SHA-256: */ |
180 | const static sha2_word32 sha256_initial_hash_value[8] = { |
181 | 0x6a09e667UL, |
182 | 0xbb67ae85UL, |
183 | 0x3c6ef372UL, |
184 | 0xa54ff53aUL, |
185 | 0x510e527fUL, |
186 | 0x9b05688cUL, |
187 | 0x1f83d9abUL, |
188 | 0x5be0cd19UL |
189 | }; |
190 | |
191 | /* Hash constant words K for SHA-384 and SHA-512: */ |
192 | const static sha2_word64 K512[80] = { |
193 | APR_UINT64_C(0x428a2f98d728ae22)0x428a2f98d728ae22UL, APR_UINT64_C(0x7137449123ef65cd)0x7137449123ef65cdUL, |
194 | APR_UINT64_C(0xb5c0fbcfec4d3b2f)0xb5c0fbcfec4d3b2fUL, APR_UINT64_C(0xe9b5dba58189dbbc)0xe9b5dba58189dbbcUL, |
195 | APR_UINT64_C(0x3956c25bf348b538)0x3956c25bf348b538UL, APR_UINT64_C(0x59f111f1b605d019)0x59f111f1b605d019UL, |
196 | APR_UINT64_C(0x923f82a4af194f9b)0x923f82a4af194f9bUL, APR_UINT64_C(0xab1c5ed5da6d8118)0xab1c5ed5da6d8118UL, |
197 | APR_UINT64_C(0xd807aa98a3030242)0xd807aa98a3030242UL, APR_UINT64_C(0x12835b0145706fbe)0x12835b0145706fbeUL, |
198 | APR_UINT64_C(0x243185be4ee4b28c)0x243185be4ee4b28cUL, APR_UINT64_C(0x550c7dc3d5ffb4e2)0x550c7dc3d5ffb4e2UL, |
199 | APR_UINT64_C(0x72be5d74f27b896f)0x72be5d74f27b896fUL, APR_UINT64_C(0x80deb1fe3b1696b1)0x80deb1fe3b1696b1UL, |
200 | APR_UINT64_C(0x9bdc06a725c71235)0x9bdc06a725c71235UL, APR_UINT64_C(0xc19bf174cf692694)0xc19bf174cf692694UL, |
201 | APR_UINT64_C(0xe49b69c19ef14ad2)0xe49b69c19ef14ad2UL, APR_UINT64_C(0xefbe4786384f25e3)0xefbe4786384f25e3UL, |
202 | APR_UINT64_C(0x0fc19dc68b8cd5b5)0x0fc19dc68b8cd5b5UL, APR_UINT64_C(0x240ca1cc77ac9c65)0x240ca1cc77ac9c65UL, |
203 | APR_UINT64_C(0x2de92c6f592b0275)0x2de92c6f592b0275UL, APR_UINT64_C(0x4a7484aa6ea6e483)0x4a7484aa6ea6e483UL, |
204 | APR_UINT64_C(0x5cb0a9dcbd41fbd4)0x5cb0a9dcbd41fbd4UL, APR_UINT64_C(0x76f988da831153b5)0x76f988da831153b5UL, |
205 | APR_UINT64_C(0x983e5152ee66dfab)0x983e5152ee66dfabUL, APR_UINT64_C(0xa831c66d2db43210)0xa831c66d2db43210UL, |
206 | APR_UINT64_C(0xb00327c898fb213f)0xb00327c898fb213fUL, APR_UINT64_C(0xbf597fc7beef0ee4)0xbf597fc7beef0ee4UL, |
207 | APR_UINT64_C(0xc6e00bf33da88fc2)0xc6e00bf33da88fc2UL, APR_UINT64_C(0xd5a79147930aa725)0xd5a79147930aa725UL, |
208 | APR_UINT64_C(0x06ca6351e003826f)0x06ca6351e003826fUL, APR_UINT64_C(0x142929670a0e6e70)0x142929670a0e6e70UL, |
209 | APR_UINT64_C(0x27b70a8546d22ffc)0x27b70a8546d22ffcUL, APR_UINT64_C(0x2e1b21385c26c926)0x2e1b21385c26c926UL, |
210 | APR_UINT64_C(0x4d2c6dfc5ac42aed)0x4d2c6dfc5ac42aedUL, APR_UINT64_C(0x53380d139d95b3df)0x53380d139d95b3dfUL, |
211 | APR_UINT64_C(0x650a73548baf63de)0x650a73548baf63deUL, APR_UINT64_C(0x766a0abb3c77b2a8)0x766a0abb3c77b2a8UL, |
212 | APR_UINT64_C(0x81c2c92e47edaee6)0x81c2c92e47edaee6UL, APR_UINT64_C(0x92722c851482353b)0x92722c851482353bUL, |
213 | APR_UINT64_C(0xa2bfe8a14cf10364)0xa2bfe8a14cf10364UL, APR_UINT64_C(0xa81a664bbc423001)0xa81a664bbc423001UL, |
214 | APR_UINT64_C(0xc24b8b70d0f89791)0xc24b8b70d0f89791UL, APR_UINT64_C(0xc76c51a30654be30)0xc76c51a30654be30UL, |
215 | APR_UINT64_C(0xd192e819d6ef5218)0xd192e819d6ef5218UL, APR_UINT64_C(0xd69906245565a910)0xd69906245565a910UL, |
216 | APR_UINT64_C(0xf40e35855771202a)0xf40e35855771202aUL, APR_UINT64_C(0x106aa07032bbd1b8)0x106aa07032bbd1b8UL, |
217 | APR_UINT64_C(0x19a4c116b8d2d0c8)0x19a4c116b8d2d0c8UL, APR_UINT64_C(0x1e376c085141ab53)0x1e376c085141ab53UL, |
218 | APR_UINT64_C(0x2748774cdf8eeb99)0x2748774cdf8eeb99UL, APR_UINT64_C(0x34b0bcb5e19b48a8)0x34b0bcb5e19b48a8UL, |
219 | APR_UINT64_C(0x391c0cb3c5c95a63)0x391c0cb3c5c95a63UL, APR_UINT64_C(0x4ed8aa4ae3418acb)0x4ed8aa4ae3418acbUL, |
220 | APR_UINT64_C(0x5b9cca4f7763e373)0x5b9cca4f7763e373UL, APR_UINT64_C(0x682e6ff3d6b2b8a3)0x682e6ff3d6b2b8a3UL, |
221 | APR_UINT64_C(0x748f82ee5defb2fc)0x748f82ee5defb2fcUL, APR_UINT64_C(0x78a5636f43172f60)0x78a5636f43172f60UL, |
222 | APR_UINT64_C(0x84c87814a1f0ab72)0x84c87814a1f0ab72UL, APR_UINT64_C(0x8cc702081a6439ec)0x8cc702081a6439ecUL, |
223 | APR_UINT64_C(0x90befffa23631e28)0x90befffa23631e28UL, APR_UINT64_C(0xa4506cebde82bde9)0xa4506cebde82bde9UL, |
224 | APR_UINT64_C(0xbef9a3f7b2c67915)0xbef9a3f7b2c67915UL, APR_UINT64_C(0xc67178f2e372532b)0xc67178f2e372532bUL, |
225 | APR_UINT64_C(0xca273eceea26619c)0xca273eceea26619cUL, APR_UINT64_C(0xd186b8c721c0c207)0xd186b8c721c0c207UL, |
226 | APR_UINT64_C(0xeada7dd6cde0eb1e)0xeada7dd6cde0eb1eUL, APR_UINT64_C(0xf57d4f7fee6ed178)0xf57d4f7fee6ed178UL, |
227 | APR_UINT64_C(0x06f067aa72176fba)0x06f067aa72176fbaUL, APR_UINT64_C(0x0a637dc5a2c898a6)0x0a637dc5a2c898a6UL, |
228 | APR_UINT64_C(0x113f9804bef90dae)0x113f9804bef90daeUL, APR_UINT64_C(0x1b710b35131c471b)0x1b710b35131c471bUL, |
229 | APR_UINT64_C(0x28db77f523047d84)0x28db77f523047d84UL, APR_UINT64_C(0x32caab7b40c72493)0x32caab7b40c72493UL, |
230 | APR_UINT64_C(0x3c9ebe0a15c9bebc)0x3c9ebe0a15c9bebcUL, APR_UINT64_C(0x431d67c49c100d4c)0x431d67c49c100d4cUL, |
231 | APR_UINT64_C(0x4cc5d4becb3e42b6)0x4cc5d4becb3e42b6UL, APR_UINT64_C(0x597f299cfc657e2a)0x597f299cfc657e2aUL, |
232 | APR_UINT64_C(0x5fcb6fab3ad6faec)0x5fcb6fab3ad6faecUL, APR_UINT64_C(0x6c44198c4a475817)0x6c44198c4a475817UL |
233 | }; |
234 | |
235 | /* Initial hash value H for SHA-384 */ |
236 | const static sha2_word64 sha384_initial_hash_value[8] = { |
237 | APR_UINT64_C(0xcbbb9d5dc1059ed8)0xcbbb9d5dc1059ed8UL, |
238 | APR_UINT64_C(0x629a292a367cd507)0x629a292a367cd507UL, |
239 | APR_UINT64_C(0x9159015a3070dd17)0x9159015a3070dd17UL, |
240 | APR_UINT64_C(0x152fecd8f70e5939)0x152fecd8f70e5939UL, |
241 | APR_UINT64_C(0x67332667ffc00b31)0x67332667ffc00b31UL, |
242 | APR_UINT64_C(0x8eb44a8768581511)0x8eb44a8768581511UL, |
243 | APR_UINT64_C(0xdb0c2e0d64f98fa7)0xdb0c2e0d64f98fa7UL, |
244 | APR_UINT64_C(0x47b5481dbefa4fa4)0x47b5481dbefa4fa4UL |
245 | }; |
246 | |
247 | /* Initial hash value H for SHA-512 */ |
248 | const static sha2_word64 sha512_initial_hash_value[8] = { |
249 | APR_UINT64_C(0x6a09e667f3bcc908)0x6a09e667f3bcc908UL, |
250 | APR_UINT64_C(0xbb67ae8584caa73b)0xbb67ae8584caa73bUL, |
251 | APR_UINT64_C(0x3c6ef372fe94f82b)0x3c6ef372fe94f82bUL, |
252 | APR_UINT64_C(0xa54ff53a5f1d36f1)0xa54ff53a5f1d36f1UL, |
253 | APR_UINT64_C(0x510e527fade682d1)0x510e527fade682d1UL, |
254 | APR_UINT64_C(0x9b05688c2b3e6c1f)0x9b05688c2b3e6c1fUL, |
255 | APR_UINT64_C(0x1f83d9abfb41bd6b)0x1f83d9abfb41bd6bUL, |
256 | APR_UINT64_C(0x5be0cd19137e2179)0x5be0cd19137e2179UL |
257 | }; |
258 | |
259 | /* |
260 | * Constant used by SHA256/384/512_End() functions for converting the |
261 | * digest to a readable hexadecimal character string: |
262 | */ |
263 | static const char *sha2_hex_digits = "0123456789abcdef"; |
264 | |
265 | |
266 | /*** SHA-256: *********************************************************/ |
267 | void apr__SHA256_Init(SHA256_CTX* context) { |
268 | if (context == (SHA256_CTX*)0) { |
269 | return; |
270 | } |
271 | MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH)memcpy((context->state), (sha256_initial_hash_value), (32) ); |
272 | MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH)memset((context->buffer), 0, (64)); |
273 | context->bitcount = 0; |
274 | } |
275 | |
276 | #ifdef SHA2_UNROLL_TRANSFORM |
277 | |
278 | /* Unrolled SHA-256 round macros: */ |
279 | |
280 | #if !APR_IS_BIGENDIAN0 |
281 | |
282 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
283 | REVERSE32(*data++, W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; \ |
284 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
285 | K256[j] + W256[j]; \ |
286 | (d) += T1; \ |
287 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
288 | j++ |
289 | |
290 | |
291 | #else /* APR_IS_BIGENDIAN */ |
292 | |
293 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
294 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
295 | K256[j] + (W256[j] = *data++); \ |
296 | (d) += T1; \ |
297 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
298 | j++ |
299 | |
300 | #endif /* APR_IS_BIGENDIAN */ |
301 | |
302 | #define ROUND256(a,b,c,d,e,f,g,h) \ |
303 | s0 = W256[(j+1)&0x0f]; \ |
304 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ |
305 | s1 = W256[(j+14)&0x0f]; \ |
306 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ |
307 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ |
308 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
309 | (d) += T1; \ |
310 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
311 | j++ |
312 | |
313 | void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
314 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
315 | sha2_word32 T1, *W256; |
316 | int j; |
317 | |
318 | W256 = (sha2_word32*)context->buffer; |
319 | |
320 | /* Initialize registers with the prev. intermediate value */ |
321 | a = context->state[0]; |
322 | b = context->state[1]; |
323 | c = context->state[2]; |
324 | d = context->state[3]; |
325 | e = context->state[4]; |
326 | f = context->state[5]; |
327 | g = context->state[6]; |
328 | h = context->state[7]; |
329 | |
330 | j = 0; |
331 | do { |
332 | /* Rounds 0 to 15 (unrolled): */ |
333 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
334 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
335 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
336 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
337 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
338 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
339 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
340 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
341 | } while (j < 16); |
342 | |
343 | /* Now for the remaining rounds to 64: */ |
344 | do { |
345 | ROUND256(a,b,c,d,e,f,g,h); |
346 | ROUND256(h,a,b,c,d,e,f,g); |
347 | ROUND256(g,h,a,b,c,d,e,f); |
348 | ROUND256(f,g,h,a,b,c,d,e); |
349 | ROUND256(e,f,g,h,a,b,c,d); |
350 | ROUND256(d,e,f,g,h,a,b,c); |
351 | ROUND256(c,d,e,f,g,h,a,b); |
352 | ROUND256(b,c,d,e,f,g,h,a); |
353 | } while (j < 64); |
354 | |
355 | /* Compute the current intermediate hash value */ |
356 | context->state[0] += a; |
357 | context->state[1] += b; |
358 | context->state[2] += c; |
359 | context->state[3] += d; |
360 | context->state[4] += e; |
361 | context->state[5] += f; |
362 | context->state[6] += g; |
363 | context->state[7] += h; |
364 | |
365 | /* Clean up */ |
366 | a = b = c = d = e = f = g = h = T1 = 0; |
367 | } |
368 | |
369 | #else /* SHA2_UNROLL_TRANSFORM */ |
370 | |
371 | void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
372 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
373 | sha2_word32 T1, T2, *W256; |
374 | int j; |
375 | |
376 | W256 = (sha2_word32*)context->buffer; |
377 | |
378 | /* Initialize registers with the prev. intermediate value */ |
379 | a = context->state[0]; |
380 | b = context->state[1]; |
381 | c = context->state[2]; |
382 | d = context->state[3]; |
383 | e = context->state[4]; |
384 | f = context->state[5]; |
385 | g = context->state[6]; |
386 | h = context->state[7]; |
387 | |
388 | j = 0; |
389 | do { |
390 | #if !APR_IS_BIGENDIAN0 |
391 | /* Copy data while converting to host byte order */ |
392 | REVERSE32(*data++,W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
393 | /* Apply the SHA-256 compression function to update a..h */ |
394 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; |
395 | #else /* APR_IS_BIGENDIAN */ |
396 | /* Apply the SHA-256 compression function to update a..h with copy */ |
397 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + (W256[j] = *data++); |
398 | #endif /* APR_IS_BIGENDIAN */ |
399 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
400 | h = g; |
401 | g = f; |
402 | f = e; |
403 | e = d + T1; |
404 | d = c; |
405 | c = b; |
406 | b = a; |
407 | a = T1 + T2; |
408 | |
409 | j++; |
410 | } while (j < 16); |
411 | |
412 | do { |
413 | /* Part of the message block expansion: */ |
414 | s0 = W256[(j+1)&0x0f]; |
415 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); |
416 | s1 = W256[(j+14)&0x0f]; |
417 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); |
418 | |
419 | /* Apply the SHA-256 compression function to update a..h */ |
420 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + |
421 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
422 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
423 | h = g; |
424 | g = f; |
425 | f = e; |
426 | e = d + T1; |
427 | d = c; |
428 | c = b; |
429 | b = a; |
430 | a = T1 + T2; |
431 | |
432 | j++; |
433 | } while (j < 64); |
434 | |
435 | /* Compute the current intermediate hash value */ |
436 | context->state[0] += a; |
437 | context->state[1] += b; |
438 | context->state[2] += c; |
439 | context->state[3] += d; |
440 | context->state[4] += e; |
441 | context->state[5] += f; |
442 | context->state[6] += g; |
443 | context->state[7] += h; |
444 | |
445 | /* Clean up */ |
446 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
447 | } |
448 | |
449 | #endif /* SHA2_UNROLL_TRANSFORM */ |
450 | |
451 | void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { |
452 | unsigned int freespace, usedspace; |
453 | |
454 | if (len == 0) { |
455 | /* Calling with no data is valid - we do nothing */ |
456 | return; |
457 | } |
458 | |
459 | /* Sanity check: */ |
460 | assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0)((context != (SHA256_CTX*)0 && data != (sha2_byte*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0 && data != (sha2_byte*)0" , "random/unix/sha2.c", 460, __PRETTY_FUNCTION__)); |
461 | |
462 | usedspace = (unsigned int)((context->bitcount >> 3) |
463 | % SHA256_BLOCK_LENGTH64); |
464 | if (usedspace > 0) { |
465 | /* Calculate how much free space is available in the buffer */ |
466 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; |
467 | |
468 | if (len >= freespace) { |
469 | /* Fill the buffer completely and process it */ |
470 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace)memcpy((&context->buffer[usedspace]), (data), (freespace )); |
471 | context->bitcount += freespace << 3; |
472 | len -= freespace; |
473 | data += freespace; |
474 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
475 | } else { |
476 | /* The buffer is not yet full */ |
477 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len)memcpy((&context->buffer[usedspace]), (data), (len)); |
478 | context->bitcount += len << 3; |
479 | /* Clean up: */ |
480 | usedspace = freespace = 0; |
Value stored to 'usedspace' is never read | |
481 | return; |
482 | } |
483 | } |
484 | while (len >= SHA256_BLOCK_LENGTH64) { |
485 | /* Process as many complete blocks as we can */ |
486 | apr__SHA256_Transform(context, (sha2_word32*)data); |
487 | context->bitcount += SHA256_BLOCK_LENGTH64 << 3; |
488 | len -= SHA256_BLOCK_LENGTH64; |
489 | data += SHA256_BLOCK_LENGTH64; |
490 | } |
491 | if (len > 0) { |
492 | /* There's left-overs, so save 'em */ |
493 | MEMCPY_BCOPY(context->buffer, data, len)memcpy((context->buffer), (data), (len)); |
494 | context->bitcount += len << 3; |
495 | } |
496 | /* Clean up: */ |
497 | usedspace = freespace = 0; |
498 | } |
499 | |
500 | void apr__SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { |
501 | sha2_word32 *d = (sha2_word32*)digest; |
502 | unsigned int usedspace; |
503 | |
504 | /* Sanity check: */ |
505 | assert(context != (SHA256_CTX*)0)((context != (SHA256_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0" , "random/unix/sha2.c", 505, __PRETTY_FUNCTION__)); |
506 | |
507 | /* If no digest buffer is passed, we don't bother doing this: */ |
508 | if (digest != (sha2_byte*)0) { |
509 | usedspace = (unsigned int)((context->bitcount >> 3) |
510 | % SHA256_BLOCK_LENGTH64); |
511 | #if !APR_IS_BIGENDIAN0 |
512 | /* Convert FROM host byte order */ |
513 | REVERSE64(context->bitcount,context->bitcount){ sha2_word64 tmp = (context->bitcount); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
514 | #endif |
515 | if (usedspace > 0) { |
516 | /* Begin padding with a 1 bit: */ |
517 | context->buffer[usedspace++] = 0x80; |
518 | |
519 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { |
520 | /* Set-up for the last transform: */ |
521 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, ((64 - 8) - usedspace )); |
522 | } else { |
523 | if (usedspace < SHA256_BLOCK_LENGTH64) { |
524 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, (64 - usedspace )); |
525 | } |
526 | /* Do second-to-last transform: */ |
527 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
528 | |
529 | /* And set-up for the last transform: */ |
530 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((64 - 8))); |
531 | } |
532 | } else { |
533 | /* Set-up for the last transform: */ |
534 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((64 - 8))); |
535 | |
536 | /* Begin padding with a 1 bit: */ |
537 | *context->buffer = 0x80; |
538 | } |
539 | /* Set the bit count: */ |
540 | *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH(64 - 8)] = context->bitcount; |
541 | |
542 | /* Final transform: */ |
543 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
544 | |
545 | #if !APR_IS_BIGENDIAN0 |
546 | { |
547 | /* Convert TO host byte order */ |
548 | int j; |
549 | for (j = 0; j < 8; j++) { |
550 | REVERSE32(context->state[j],context->state[j]){ sha2_word32 tmp = (context->state[j]); tmp = (tmp >> 16) | (tmp << 16); (context->state[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
551 | *d++ = context->state[j]; |
552 | } |
553 | } |
554 | #else |
555 | MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH)memcpy((d), (context->state), (32)); |
556 | #endif |
557 | } |
558 | |
559 | /* Clean up state data: */ |
560 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
561 | usedspace = 0; |
562 | } |
563 | |
564 | char *apr__SHA256_End(SHA256_CTX* context, char buffer[]) { |
565 | sha2_byte digest[SHA256_DIGEST_LENGTH32], *d = digest; |
566 | int i; |
567 | |
568 | /* Sanity check: */ |
569 | assert(context != (SHA256_CTX*)0)((context != (SHA256_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0" , "random/unix/sha2.c", 569, __PRETTY_FUNCTION__)); |
570 | |
571 | if (buffer != (char*)0) { |
572 | apr__SHA256_Final(digest, context); |
573 | |
574 | for (i = 0; i < SHA256_DIGEST_LENGTH32; i++) { |
575 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
576 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
577 | d++; |
578 | } |
579 | *buffer = (char)0; |
580 | } else { |
581 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
582 | } |
583 | MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH)memset((digest), 0, (32)); |
584 | return buffer; |
585 | } |
586 | |
587 | char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH(32 * 2 + 1)]) { |
588 | SHA256_CTX context; |
589 | |
590 | apr__SHA256_Init(&context); |
591 | apr__SHA256_Update(&context, data, len); |
592 | return apr__SHA256_End(&context, digest); |
593 | } |
594 | |
595 | |
596 | /*** SHA-512: *********************************************************/ |
597 | void apr__SHA512_Init(SHA512_CTX* context) { |
598 | if (context == (SHA512_CTX*)0) { |
599 | return; |
600 | } |
601 | MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha512_initial_hash_value), (64) ); |
602 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH)memset((context->buffer), 0, (128)); |
603 | context->bitcount[0] = context->bitcount[1] = 0; |
604 | } |
605 | |
606 | #ifdef SHA2_UNROLL_TRANSFORM |
607 | |
608 | /* Unrolled SHA-512 round macros: */ |
609 | #if !APR_IS_BIGENDIAN0 |
610 | |
611 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
612 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8); (W512[j] ) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; \ |
613 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
614 | K512[j] + W512[j]; \ |
615 | (d) += T1, \ |
616 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))), \ |
617 | j++ |
618 | |
619 | |
620 | #else /* APR_IS_BIGENDIAN */ |
621 | |
622 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
623 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
624 | K512[j] + (W512[j] = *data++); \ |
625 | (d) += T1; \ |
626 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
627 | j++ |
628 | |
629 | #endif /* APR_IS_BIGENDIAN */ |
630 | |
631 | #define ROUND512(a,b,c,d,e,f,g,h) \ |
632 | s0 = W512[(j+1)&0x0f]; \ |
633 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ |
634 | s1 = W512[(j+14)&0x0f]; \ |
635 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ |
636 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ |
637 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
638 | (d) += T1; \ |
639 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
640 | j++ |
641 | |
642 | void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
643 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
644 | sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; |
645 | int j; |
646 | |
647 | /* Initialize registers with the prev. intermediate value */ |
648 | a = context->state[0]; |
649 | b = context->state[1]; |
650 | c = context->state[2]; |
651 | d = context->state[3]; |
652 | e = context->state[4]; |
653 | f = context->state[5]; |
654 | g = context->state[6]; |
655 | h = context->state[7]; |
656 | |
657 | j = 0; |
658 | do { |
659 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
660 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
661 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
662 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
663 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
664 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
665 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
666 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
667 | } while (j < 16); |
668 | |
669 | /* Now for the remaining rounds up to 79: */ |
670 | do { |
671 | ROUND512(a,b,c,d,e,f,g,h); |
672 | ROUND512(h,a,b,c,d,e,f,g); |
673 | ROUND512(g,h,a,b,c,d,e,f); |
674 | ROUND512(f,g,h,a,b,c,d,e); |
675 | ROUND512(e,f,g,h,a,b,c,d); |
676 | ROUND512(d,e,f,g,h,a,b,c); |
677 | ROUND512(c,d,e,f,g,h,a,b); |
678 | ROUND512(b,c,d,e,f,g,h,a); |
679 | } while (j < 80); |
680 | |
681 | /* Compute the current intermediate hash value */ |
682 | context->state[0] += a; |
683 | context->state[1] += b; |
684 | context->state[2] += c; |
685 | context->state[3] += d; |
686 | context->state[4] += e; |
687 | context->state[5] += f; |
688 | context->state[6] += g; |
689 | context->state[7] += h; |
690 | |
691 | /* Clean up */ |
692 | a = b = c = d = e = f = g = h = T1 = 0; |
693 | } |
694 | |
695 | #else /* SHA2_UNROLL_TRANSFORM */ |
696 | |
697 | void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
698 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
699 | sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; |
700 | int j; |
701 | |
702 | /* Initialize registers with the prev. intermediate value */ |
703 | a = context->state[0]; |
704 | b = context->state[1]; |
705 | c = context->state[2]; |
706 | d = context->state[3]; |
707 | e = context->state[4]; |
708 | f = context->state[5]; |
709 | g = context->state[6]; |
710 | h = context->state[7]; |
711 | |
712 | j = 0; |
713 | do { |
714 | #if !APR_IS_BIGENDIAN0 |
715 | /* Convert TO host byte order */ |
716 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8); (W512[j] ) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
717 | /* Apply the SHA-512 compression function to update a..h */ |
718 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; |
719 | #else /* APR_IS_BIGENDIAN */ |
720 | /* Apply the SHA-512 compression function to update a..h with copy */ |
721 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + (W512[j] = *data++); |
722 | #endif /* APR_IS_BIGENDIAN */ |
723 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
724 | h = g; |
725 | g = f; |
726 | f = e; |
727 | e = d + T1; |
728 | d = c; |
729 | c = b; |
730 | b = a; |
731 | a = T1 + T2; |
732 | |
733 | j++; |
734 | } while (j < 16); |
735 | |
736 | do { |
737 | /* Part of the message block expansion: */ |
738 | s0 = W512[(j+1)&0x0f]; |
739 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); |
740 | s1 = W512[(j+14)&0x0f]; |
741 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); |
742 | |
743 | /* Apply the SHA-512 compression function to update a..h */ |
744 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + |
745 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
746 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
747 | h = g; |
748 | g = f; |
749 | f = e; |
750 | e = d + T1; |
751 | d = c; |
752 | c = b; |
753 | b = a; |
754 | a = T1 + T2; |
755 | |
756 | j++; |
757 | } while (j < 80); |
758 | |
759 | /* Compute the current intermediate hash value */ |
760 | context->state[0] += a; |
761 | context->state[1] += b; |
762 | context->state[2] += c; |
763 | context->state[3] += d; |
764 | context->state[4] += e; |
765 | context->state[5] += f; |
766 | context->state[6] += g; |
767 | context->state[7] += h; |
768 | |
769 | /* Clean up */ |
770 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
771 | } |
772 | |
773 | #endif /* SHA2_UNROLL_TRANSFORM */ |
774 | |
775 | void apr__SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { |
776 | unsigned int freespace, usedspace; |
777 | |
778 | if (len == 0) { |
779 | /* Calling with no data is valid - we do nothing */ |
780 | return; |
781 | } |
782 | |
783 | /* Sanity check: */ |
784 | assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0)((context != (SHA512_CTX*)0 && data != (sha2_byte*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0 && data != (sha2_byte*)0" , "random/unix/sha2.c", 784, __PRETTY_FUNCTION__)); |
785 | |
786 | usedspace = (unsigned int)((context->bitcount[0] >> 3) |
787 | % SHA512_BLOCK_LENGTH128); |
788 | if (usedspace > 0) { |
789 | /* Calculate how much free space is available in the buffer */ |
790 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; |
791 | |
792 | if (len >= freespace) { |
793 | /* Fill the buffer completely and process it */ |
794 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace)memcpy((&context->buffer[usedspace]), (data), (freespace )); |
795 | ADDINC128(context->bitcount, freespace << 3){ (context->bitcount)[0] += (sha2_word64)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } }; |
796 | len -= freespace; |
797 | data += freespace; |
798 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
799 | } else { |
800 | /* The buffer is not yet full */ |
801 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len)memcpy((&context->buffer[usedspace]), (data), (len)); |
802 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
803 | /* Clean up: */ |
804 | usedspace = freespace = 0; |
805 | return; |
806 | } |
807 | } |
808 | while (len >= SHA512_BLOCK_LENGTH128) { |
809 | /* Process as many complete blocks as we can */ |
810 | apr__SHA512_Transform(context, (sha2_word64*)data); |
811 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3){ (context->bitcount)[0] += (sha2_word64)(128 << 3); if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } }; |
812 | len -= SHA512_BLOCK_LENGTH128; |
813 | data += SHA512_BLOCK_LENGTH128; |
814 | } |
815 | if (len > 0) { |
816 | /* There's left-overs, so save 'em */ |
817 | MEMCPY_BCOPY(context->buffer, data, len)memcpy((context->buffer), (data), (len)); |
818 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
819 | } |
820 | /* Clean up: */ |
821 | usedspace = freespace = 0; |
822 | } |
823 | |
824 | void apr__SHA512_Last(SHA512_CTX* context) { |
825 | unsigned int usedspace; |
826 | |
827 | usedspace = (unsigned int)((context->bitcount[0] >> 3) |
828 | % SHA512_BLOCK_LENGTH128); |
829 | #if !APR_IS_BIGENDIAN0 |
830 | /* Convert FROM host byte order */ |
831 | REVERSE64(context->bitcount[0],context->bitcount[0]){ sha2_word64 tmp = (context->bitcount[0]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount[0]) = ((tmp & 0xffff0000ffff0000UL ) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16 ); }; |
832 | REVERSE64(context->bitcount[1],context->bitcount[1]){ sha2_word64 tmp = (context->bitcount[1]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount[1]) = ((tmp & 0xffff0000ffff0000UL ) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16 ); }; |
833 | #endif |
834 | if (usedspace > 0) { |
835 | /* Begin padding with a 1 bit: */ |
836 | context->buffer[usedspace++] = 0x80; |
837 | |
838 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { |
839 | /* Set-up for the last transform: */ |
840 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, ((128 - 16) - usedspace)); |
841 | } else { |
842 | if (usedspace < SHA512_BLOCK_LENGTH128) { |
843 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, (128 - usedspace )); |
844 | } |
845 | /* Do second-to-last transform: */ |
846 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
847 | |
848 | /* And set-up for the last transform: */ |
849 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2)memset((context->buffer), 0, (128 - 2)); |
850 | } |
851 | } else { |
852 | /* Prepare for final transform: */ |
853 | MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((128 - 16))); |
854 | |
855 | /* Begin padding with a 1 bit: */ |
856 | *context->buffer = 0x80; |
857 | } |
858 | /* Store the length of input data (in bits): */ |
859 | *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)] = context->bitcount[1]; |
860 | *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)+8] = context->bitcount[0]; |
861 | |
862 | /* Final transform: */ |
863 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
864 | } |
865 | |
866 | void apr__SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { |
867 | sha2_word64 *d = (sha2_word64*)digest; |
868 | |
869 | /* Sanity check: */ |
870 | assert(context != (SHA512_CTX*)0)((context != (SHA512_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0" , "random/unix/sha2.c", 870, __PRETTY_FUNCTION__)); |
871 | |
872 | /* If no digest buffer is passed, we don't bother doing this: */ |
873 | if (digest != (sha2_byte*)0) { |
874 | apr__SHA512_Last(context); |
875 | |
876 | /* Save the hash data for output: */ |
877 | #if !APR_IS_BIGENDIAN0 |
878 | { |
879 | /* Convert TO host byte order */ |
880 | int j; |
881 | for (j = 0; j < 8; j++) { |
882 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->state[j]) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
883 | *d++ = context->state[j]; |
884 | } |
885 | } |
886 | #else /* APR_IS_BIGENDIAN */ |
887 | MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH)memcpy((d), (context->state), (64)); |
888 | #endif /* APR_IS_BIGENDIAN */ |
889 | } |
890 | |
891 | /* Zero out state data */ |
892 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
893 | } |
894 | |
895 | char *apr__SHA512_End(SHA512_CTX* context, char buffer[]) { |
896 | sha2_byte digest[SHA512_DIGEST_LENGTH64], *d = digest; |
897 | int i; |
898 | |
899 | /* Sanity check: */ |
900 | assert(context != (SHA512_CTX*)0)((context != (SHA512_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0" , "random/unix/sha2.c", 900, __PRETTY_FUNCTION__)); |
901 | |
902 | if (buffer != (char*)0) { |
903 | apr__SHA512_Final(digest, context); |
904 | |
905 | for (i = 0; i < SHA512_DIGEST_LENGTH64; i++) { |
906 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
907 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
908 | d++; |
909 | } |
910 | *buffer = (char)0; |
911 | } else { |
912 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
913 | } |
914 | MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH)memset((digest), 0, (64)); |
915 | return buffer; |
916 | } |
917 | |
918 | char* apr__SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH(64 * 2 + 1)]) { |
919 | SHA512_CTX context; |
920 | |
921 | apr__SHA512_Init(&context); |
922 | apr__SHA512_Update(&context, data, len); |
923 | return apr__SHA512_End(&context, digest); |
924 | } |
925 | |
926 | |
927 | /*** SHA-384: *********************************************************/ |
928 | void apr__SHA384_Init(SHA384_CTX* context) { |
929 | if (context == (SHA384_CTX*)0) { |
930 | return; |
931 | } |
932 | MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha384_initial_hash_value), (64) ); |
933 | MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH)memset((context->buffer), 0, (128)); |
934 | context->bitcount[0] = context->bitcount[1] = 0; |
935 | } |
936 | |
937 | void apr__SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { |
938 | apr__SHA512_Update((SHA512_CTX*)context, data, len); |
939 | } |
940 | |
941 | void apr__SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { |
942 | sha2_word64 *d = (sha2_word64*)digest; |
943 | |
944 | /* Sanity check: */ |
945 | assert(context != (SHA384_CTX*)0)((context != (SHA384_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA384_CTX*)0" , "random/unix/sha2.c", 945, __PRETTY_FUNCTION__)); |
946 | |
947 | /* If no digest buffer is passed, we don't bother doing this: */ |
948 | if (digest != (sha2_byte*)0) { |
949 | apr__SHA512_Last((SHA512_CTX*)context); |
950 | |
951 | /* Save the hash data for output: */ |
952 | #if !APR_IS_BIGENDIAN0 |
953 | { |
954 | /* Convert TO host byte order */ |
955 | int j; |
956 | for (j = 0; j < 6; j++) { |
957 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->state[j]) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
958 | *d++ = context->state[j]; |
959 | } |
960 | } |
961 | #else /* APR_IS_BIGENDIAN */ |
962 | MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH)memcpy((d), (context->state), (48)); |
963 | #endif /* APR_IS_BIGENDIAN */ |
964 | } |
965 | |
966 | /* Zero out state data */ |
967 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
968 | } |
969 | |
970 | char *apr__SHA384_End(SHA384_CTX* context, char buffer[]) { |
971 | sha2_byte digest[SHA384_DIGEST_LENGTH48], *d = digest; |
972 | int i; |
973 | |
974 | /* Sanity check: */ |
975 | assert(context != (SHA384_CTX*)0)((context != (SHA384_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA384_CTX*)0" , "random/unix/sha2.c", 975, __PRETTY_FUNCTION__)); |
976 | |
977 | if (buffer != (char*)0) { |
978 | apr__SHA384_Final(digest, context); |
979 | |
980 | for (i = 0; i < SHA384_DIGEST_LENGTH48; i++) { |
981 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
982 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
983 | d++; |
984 | } |
985 | *buffer = (char)0; |
986 | } else { |
987 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
988 | } |
989 | MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH)memset((digest), 0, (48)); |
990 | return buffer; |
991 | } |
992 | |
993 | char* apr__SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH(48 * 2 + 1)]) { |
994 | SHA384_CTX context; |
995 | |
996 | apr__SHA384_Init(&context); |
997 | apr__SHA384_Update(&context, data, len); |
998 | return apr__SHA384_End(&context, digest); |
999 | } |
1000 |