File: | libs/opus-1.1-p2/celt/bands.c |
Location: | line 571, column 12 |
Description: | Assigned value is garbage or undefined |
1 | /* Copyright (c) 2007-2008 CSIRO | |||
2 | Copyright (c) 2007-2009 Xiph.Org Foundation | |||
3 | Copyright (c) 2008-2009 Gregory Maxwell | |||
4 | Written by Jean-Marc Valin and Gregory Maxwell */ | |||
5 | /* | |||
6 | Redistribution and use in source and binary forms, with or without | |||
7 | modification, are permitted provided that the following conditions | |||
8 | are met: | |||
9 | ||||
10 | - Redistributions of source code must retain the above copyright | |||
11 | notice, this list of conditions and the following disclaimer. | |||
12 | ||||
13 | - Redistributions in binary form must reproduce the above copyright | |||
14 | notice, this list of conditions and the following disclaimer in the | |||
15 | documentation and/or other materials provided with the distribution. | |||
16 | ||||
17 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
18 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
19 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
20 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | |||
21 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |||
22 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |||
23 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |||
24 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |||
25 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |||
26 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |||
27 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
28 | */ | |||
29 | ||||
30 | #ifdef HAVE_CONFIG_H1 | |||
31 | #include "config.h" | |||
32 | #endif | |||
33 | ||||
34 | #include <math.h> | |||
35 | #include "bands.h" | |||
36 | #include "modes.h" | |||
37 | #include "vq.h" | |||
38 | #include "cwrs.h" | |||
39 | #include "stack_alloc.h" | |||
40 | #include "os_support.h" | |||
41 | #include "mathops.h" | |||
42 | #include "rate.h" | |||
43 | #include "quant_bands.h" | |||
44 | #include "pitch.h" | |||
45 | ||||
46 | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) | |||
47 | { | |||
48 | int i; | |||
49 | for (i=0;i<N;i++) | |||
50 | { | |||
51 | if (val < thresholds[i]) | |||
52 | break; | |||
53 | } | |||
54 | if (i>prev && val < thresholds[prev]+hysteresis[prev]) | |||
55 | i=prev; | |||
56 | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) | |||
57 | i=prev; | |||
58 | return i; | |||
59 | } | |||
60 | ||||
61 | opus_uint32 celt_lcg_rand(opus_uint32 seed) | |||
62 | { | |||
63 | return 1664525 * seed + 1013904223; | |||
64 | } | |||
65 | ||||
66 | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness | |||
67 | with this approximation is important because it has an impact on the bit allocation */ | |||
68 | static opus_int16 bitexact_cos(opus_int16 x) | |||
69 | { | |||
70 | opus_int32 tmp; | |||
71 | opus_int16 x2; | |||
72 | tmp = (4096+((opus_int32)(x)*(x)))>>13; | |||
73 | celt_assert(tmp<=32767); | |||
74 | x2 = tmp; | |||
75 | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))))((16384+((opus_int32)(opus_int16)(x2)*(opus_int16)((-7651 + ( (16384+((opus_int32)(opus_int16)(x2)*(opus_int16)((8277 + ((16384 +((opus_int32)(opus_int16)(-626)*(opus_int16)(x2)))>>15 )))))>>15)))))>>15); | |||
76 | celt_assert(x2<=32766); | |||
77 | return 1+x2; | |||
78 | } | |||
79 | ||||
80 | static int bitexact_log2tan(int isin,int icos) | |||
81 | { | |||
82 | int lc; | |||
83 | int ls; | |||
84 | lc=EC_ILOG(icos)(((int)sizeof(unsigned)*8)-(__builtin_clz(icos))); | |||
85 | ls=EC_ILOG(isin)(((int)sizeof(unsigned)*8)-(__builtin_clz(isin))); | |||
86 | icos<<=15-lc; | |||
87 | isin<<=15-ls; | |||
88 | return (ls-lc)*(1<<11) | |||
89 | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)((16384+((opus_int32)(opus_int16)(isin)*(opus_int16)(((16384+ ((opus_int32)(opus_int16)(isin)*(opus_int16)(-2597)))>> 15) + 7932)))>>15) | |||
90 | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932)((16384+((opus_int32)(opus_int16)(icos)*(opus_int16)(((16384+ ((opus_int32)(opus_int16)(icos)*(opus_int16)(-2597)))>> 15) + 7932)))>>15); | |||
91 | } | |||
92 | ||||
93 | #ifdef FIXED_POINT | |||
94 | /* Compute the amplitude (sqrt energy) in each of the bands */ | |||
95 | void compute_band_energies(const CELTModeOpusCustomMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) | |||
96 | { | |||
97 | int i, c, N; | |||
98 | const opus_int16 *eBands = m->eBands; | |||
99 | N = M*m->shortMdctSize; | |||
100 | c=0; do { | |||
101 | for (i=0;i<end;i++) | |||
102 | { | |||
103 | int j; | |||
104 | opus_val32 maxval=0; | |||
105 | opus_val32 sum = 0; | |||
106 | ||||
107 | j=M*eBands[i]; do { | |||
108 | maxval = MAX32(maxval, X[j+c*N])((maxval) > (X[j+c*N]) ? (maxval) : (X[j+c*N])); | |||
109 | maxval = MAX32(maxval, -X[j+c*N])((maxval) > (-X[j+c*N]) ? (maxval) : (-X[j+c*N])); | |||
110 | } while (++j<M*eBands[i+1]); | |||
111 | ||||
112 | if (maxval > 0) | |||
113 | { | |||
114 | int shift = celt_ilog2(maxval)-10; | |||
115 | j=M*eBands[i]; do { | |||
116 | sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),((sum)+(opus_val32)(((X[j+c*N])))*(opus_val32)(((X[j+c*N])))) | |||
117 | EXTRACT16(VSHR32(X[j+c*N],shift)))((sum)+(opus_val32)(((X[j+c*N])))*(opus_val32)(((X[j+c*N])))); | |||
118 | } while (++j<M*eBands[i+1]); | |||
119 | /* We're adding one here to ensure the normalized band isn't larger than unity norm */ | |||
120 | bandE[i+c*m->nbEBands] = EPSILON1e-15f+VSHR32(EXTEND32(celt_sqrt(sum)),-shift)((((float)sqrt(sum)))); | |||
121 | } else { | |||
122 | bandE[i+c*m->nbEBands] = EPSILON1e-15f; | |||
123 | } | |||
124 | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ | |||
125 | } | |||
126 | } while (++c<C); | |||
127 | /*printf ("\n");*/ | |||
128 | } | |||
129 | ||||
130 | /* Normalise each band such that the energy is one. */ | |||
131 | void normalise_bands(const CELTModeOpusCustomMode *m, const celt_sig * OPUS_RESTRICT__restrict freq, celt_norm * OPUS_RESTRICT__restrict X, const celt_ener *bandE, int end, int C, int M) | |||
132 | { | |||
133 | int i, c, N; | |||
134 | const opus_int16 *eBands = m->eBands; | |||
135 | N = M*m->shortMdctSize; | |||
136 | c=0; do { | |||
137 | i=0; do { | |||
138 | opus_val16 g; | |||
139 | int j,shift; | |||
140 | opus_val16 E; | |||
141 | shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; | |||
142 | E = VSHR32(bandE[i+c*m->nbEBands], shift)(bandE[i+c*m->nbEBands]); | |||
143 | g = EXTRACT16(celt_rcp(SHL32(E,3)))((1.f/((E)))); | |||
144 | j=M*eBands[i]; do { | |||
145 | X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g)(((freq[j+c*N]))*(g)); | |||
146 | } while (++j<M*eBands[i+1]); | |||
147 | } while (++i<end); | |||
148 | } while (++c<C); | |||
149 | } | |||
150 | ||||
151 | #else /* FIXED_POINT */ | |||
152 | /* Compute the amplitude (sqrt energy) in each of the bands */ | |||
153 | void compute_band_energies(const CELTModeOpusCustomMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) | |||
154 | { | |||
155 | int i, c, N; | |||
156 | const opus_int16 *eBands = m->eBands; | |||
157 | N = M*m->shortMdctSize; | |||
158 | c=0; do { | |||
159 | for (i=0;i<end;i++) | |||
160 | { | |||
161 | int j; | |||
162 | opus_val32 sum = 1e-27f; | |||
163 | for (j=M*eBands[i];j<M*eBands[i+1];j++) | |||
164 | sum += X[j+c*N]*X[j+c*N]; | |||
165 | bandE[i+c*m->nbEBands] = celt_sqrt(sum)((float)sqrt(sum)); | |||
166 | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ | |||
167 | } | |||
168 | } while (++c<C); | |||
169 | /*printf ("\n");*/ | |||
170 | } | |||
171 | ||||
172 | /* Normalise each band such that the energy is one. */ | |||
173 | void normalise_bands(const CELTModeOpusCustomMode *m, const celt_sig * OPUS_RESTRICT__restrict freq, celt_norm * OPUS_RESTRICT__restrict X, const celt_ener *bandE, int end, int C, int M) | |||
174 | { | |||
175 | int i, c, N; | |||
176 | const opus_int16 *eBands = m->eBands; | |||
177 | N = M*m->shortMdctSize; | |||
178 | c=0; do { | |||
179 | for (i=0;i<end;i++) | |||
180 | { | |||
181 | int j; | |||
182 | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); | |||
183 | for (j=M*eBands[i];j<M*eBands[i+1];j++) | |||
184 | X[j+c*N] = freq[j+c*N]*g; | |||
185 | } | |||
186 | } while (++c<C); | |||
187 | } | |||
188 | ||||
189 | #endif /* FIXED_POINT */ | |||
190 | ||||
191 | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ | |||
192 | void denormalise_bands(const CELTModeOpusCustomMode *m, const celt_norm * OPUS_RESTRICT__restrict X, | |||
193 | celt_sig * OPUS_RESTRICT__restrict freq, const opus_val16 *bandLogE, int start, int end, int C, int M) | |||
194 | { | |||
195 | int i, c, N; | |||
196 | const opus_int16 *eBands = m->eBands; | |||
197 | N = M*m->shortMdctSize; | |||
198 | celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels"); | |||
199 | c=0; do { | |||
200 | celt_sig * OPUS_RESTRICT__restrict f; | |||
201 | const celt_norm * OPUS_RESTRICT__restrict x; | |||
202 | f = freq+c*N; | |||
203 | x = X+c*N+M*eBands[start]; | |||
204 | for (i=0;i<M*eBands[start];i++) | |||
205 | *f++ = 0; | |||
206 | for (i=start;i<end;i++) | |||
207 | { | |||
208 | int j, band_end; | |||
209 | opus_val16 g; | |||
210 | opus_val16 lg; | |||
211 | #ifdef FIXED_POINT | |||
212 | int shift; | |||
213 | #endif | |||
214 | j=M*eBands[i]; | |||
215 | band_end = M*eBands[i+1]; | |||
216 | lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6))((bandLogE[i+c*m->nbEBands])+(((opus_val16)eMeans[i]))); | |||
217 | #ifndef FIXED_POINT | |||
218 | g = celt_exp2(lg)((float)exp(0.6931471805599453094*(lg))); | |||
219 | #else | |||
220 | /* Handle the integer part of the log energy */ | |||
221 | shift = 16-(lg>>DB_SHIFT); | |||
222 | if (shift>31) | |||
223 | { | |||
224 | shift=0; | |||
225 | g=0; | |||
226 | } else { | |||
227 | /* Handle the fractional part. */ | |||
228 | g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); | |||
229 | } | |||
230 | /* Handle extreme gains with negative shift. */ | |||
231 | if (shift<0) | |||
232 | { | |||
233 | /* For shift < -2 we'd be likely to overflow, so we're capping | |||
234 | the gain here. This shouldn't happen unless the bitstream is | |||
235 | already corrupted. */ | |||
236 | if (shift < -2) | |||
237 | { | |||
238 | g = 32767; | |||
239 | shift = -2; | |||
240 | } | |||
241 | do { | |||
242 | *f++ = SHL32(MULT16_16(*x++, g), -shift)(((opus_val32)(*x++)*(opus_val32)(g))); | |||
243 | } while (++j<band_end); | |||
244 | } else | |||
245 | #endif | |||
246 | /* Be careful of the fixed-point "else" just above when changing this code */ | |||
247 | do { | |||
248 | *f++ = SHR32(MULT16_16(*x++, g), shift)(((opus_val32)(*x++)*(opus_val32)(g))); | |||
249 | } while (++j<band_end); | |||
250 | } | |||
251 | celt_assert(start <= end); | |||
252 | for (i=M*eBands[end];i<N;i++) | |||
253 | *f++ = 0; | |||
254 | } while (++c<C); | |||
255 | } | |||
256 | ||||
257 | /* This prevents energy collapse for transients with multiple short MDCTs */ | |||
258 | void anti_collapse(const CELTModeOpusCustomMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, | |||
259 | int start, int end, opus_val16 *logE, opus_val16 *prev1logE, | |||
260 | opus_val16 *prev2logE, int *pulses, opus_uint32 seed) | |||
261 | { | |||
262 | int c, i, j, k; | |||
263 | for (i=start;i<end;i++) | |||
264 | { | |||
265 | int N0; | |||
266 | opus_val16 thresh, sqrt_1; | |||
267 | int depth; | |||
268 | #ifdef FIXED_POINT | |||
269 | int shift; | |||
270 | opus_val32 thresh32; | |||
271 | #endif | |||
272 | ||||
273 | N0 = m->eBands[i+1]-m->eBands[i]; | |||
274 | /* depth in 1/8 bits */ | |||
275 | depth = (1+pulses[i])/((m->eBands[i+1]-m->eBands[i])<<LM); | |||
276 | ||||
277 | #ifdef FIXED_POINT | |||
278 | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1)(((float)exp(0.6931471805599453094*(-(depth))))); | |||
279 | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32))(((0.5f))*(((32767) < (thresh32) ? (32767) : (thresh32)))); | |||
280 | { | |||
281 | opus_val32 t; | |||
282 | t = N0<<LM; | |||
283 | shift = celt_ilog2(t)>>1; | |||
284 | t = SHL32(t, (7-shift)<<1)(t); | |||
285 | sqrt_1 = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
286 | } | |||
287 | #else | |||
288 | thresh = .5f*celt_exp2(-.125f*depth)((float)exp(0.6931471805599453094*(-.125f*depth))); | |||
289 | sqrt_1 = celt_rsqrt(N0<<LM)(1.f/((float)sqrt(N0<<LM))); | |||
290 | #endif | |||
291 | ||||
292 | c=0; do | |||
293 | { | |||
294 | celt_norm *X; | |||
295 | opus_val16 prev1; | |||
296 | opus_val16 prev2; | |||
297 | opus_val32 Ediff; | |||
298 | opus_val16 r; | |||
299 | int renormalize=0; | |||
300 | prev1 = prev1logE[c*m->nbEBands+i]; | |||
301 | prev2 = prev2logE[c*m->nbEBands+i]; | |||
302 | if (C==1) | |||
303 | { | |||
304 | prev1 = MAX16(prev1,prev1logE[m->nbEBands+i])((prev1) > (prev1logE[m->nbEBands+i]) ? (prev1) : (prev1logE [m->nbEBands+i])); | |||
305 | prev2 = MAX16(prev2,prev2logE[m->nbEBands+i])((prev2) > (prev2logE[m->nbEBands+i]) ? (prev2) : (prev2logE [m->nbEBands+i])); | |||
306 | } | |||
307 | Ediff = EXTEND32(logE[c*m->nbEBands+i])(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2))(((prev1) < (prev2) ? (prev1) : (prev2))); | |||
308 | Ediff = MAX32(0, Ediff)((0) > (Ediff) ? (0) : (Ediff)); | |||
309 | ||||
310 | #ifdef FIXED_POINT | |||
311 | if (Ediff < 16384) | |||
312 | { | |||
313 | opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1)(((float)exp(0.6931471805599453094*(-(Ediff))))); | |||
314 | r = 2*MIN16(16383,r32)((16383) < (r32) ? (16383) : (r32)); | |||
315 | } else { | |||
316 | r = 0; | |||
317 | } | |||
318 | if (LM==3) | |||
319 | r = MULT16_16_Q14(23170, MIN32(23169, r))((23170)*(((23169) < (r) ? (23169) : (r)))); | |||
320 | r = SHR16(MIN16(thresh, r),1)(((thresh) < (r) ? (thresh) : (r))); | |||
321 | r = SHR32(MULT16_16_Q15(sqrt_1, r),shift)(((sqrt_1)*(r))); | |||
322 | #else | |||
323 | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | |||
324 | short blocks don't have the same energy as long */ | |||
325 | r = 2.f*celt_exp2(-Ediff)((float)exp(0.6931471805599453094*(-Ediff))); | |||
326 | if (LM==3) | |||
327 | r *= 1.41421356f; | |||
328 | r = MIN16(thresh, r)((thresh) < (r) ? (thresh) : (r)); | |||
329 | r = r*sqrt_1; | |||
330 | #endif | |||
331 | X = X_+c*size+(m->eBands[i]<<LM); | |||
332 | for (k=0;k<1<<LM;k++) | |||
333 | { | |||
334 | /* Detect collapse */ | |||
335 | if (!(collapse_masks[i*C+c]&1<<k)) | |||
336 | { | |||
337 | /* Fill with noise */ | |||
338 | for (j=0;j<N0;j++) | |||
339 | { | |||
340 | seed = celt_lcg_rand(seed); | |||
341 | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | |||
342 | } | |||
343 | renormalize = 1; | |||
344 | } | |||
345 | } | |||
346 | /* We just added some energy, so we need to renormalise */ | |||
347 | if (renormalize) | |||
348 | renormalise_vector(X, N0<<LM, Q15ONE1.0f); | |||
349 | } while (++c<C); | |||
350 | } | |||
351 | } | |||
352 | ||||
353 | static void intensity_stereo(const CELTModeOpusCustomMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bandE, int bandID, int N) | |||
354 | { | |||
355 | int i = bandID; | |||
356 | int j; | |||
357 | opus_val16 a1, a2; | |||
358 | opus_val16 left, right; | |||
359 | opus_val16 norm; | |||
360 | #ifdef FIXED_POINT | |||
361 | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands])((bandE[i]) > (bandE[i+m->nbEBands]) ? (bandE[i]) : (bandE [i+m->nbEBands])))-13; | |||
362 | #endif | |||
363 | left = VSHR32(bandE[i],shift)(bandE[i]); | |||
364 | right = VSHR32(bandE[i+m->nbEBands],shift)(bandE[i+m->nbEBands]); | |||
365 | norm = EPSILON1e-15f + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right))((float)sqrt(1e-15f +((opus_val32)(left)*(opus_val32)(left))+ ((opus_val32)(right)*(opus_val32)(right)))); | |||
366 | a1 = DIV32_16(SHL32(EXTEND32(left),14),norm)(((opus_val32)(((left))))/(opus_val16)(norm)); | |||
367 | a2 = DIV32_16(SHL32(EXTEND32(right),14),norm)(((opus_val32)(((right))))/(opus_val16)(norm)); | |||
368 | for (j=0;j<N;j++) | |||
369 | { | |||
370 | celt_norm r, l; | |||
371 | l = X[j]; | |||
372 | r = Y[j]; | |||
373 | X[j] = MULT16_16_Q14(a1,l)((a1)*(l)) + MULT16_16_Q14(a2,r)((a2)*(r)); | |||
374 | /* Side is not encoded, no need to calculate */ | |||
375 | } | |||
376 | } | |||
377 | ||||
378 | static void stereo_split(celt_norm *X, celt_norm *Y, int N) | |||
379 | { | |||
380 | int j; | |||
381 | for (j=0;j<N;j++) | |||
382 | { | |||
383 | celt_norm r, l; | |||
384 | l = MULT16_16_Q15(QCONST16(.70710678f,15), X[j])(((.70710678f))*(X[j])); | |||
385 | r = MULT16_16_Q15(QCONST16(.70710678f,15), Y[j])(((.70710678f))*(Y[j])); | |||
386 | X[j] = l+r; | |||
387 | Y[j] = r-l; | |||
388 | } | |||
389 | } | |||
390 | ||||
391 | static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N) | |||
392 | { | |||
393 | int j; | |||
394 | opus_val32 xp=0, side=0; | |||
395 | opus_val32 El, Er; | |||
396 | opus_val16 mid2; | |||
397 | #ifdef FIXED_POINT | |||
398 | int kl, kr; | |||
399 | #endif | |||
400 | opus_val32 t, lgain, rgain; | |||
401 | ||||
402 | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | |||
403 | dual_inner_prod(Y, X, Y, N, &xp, &side); | |||
404 | /* Compensating for the mid normalization */ | |||
405 | xp = MULT16_32_Q15(mid, xp)((mid)*(xp)); | |||
406 | /* mid and side are in Q15, not Q14 like X and Y */ | |||
407 | mid2 = SHR32(mid, 1)(mid); | |||
408 | El = MULT16_16(mid2, mid2)((opus_val32)(mid2)*(opus_val32)(mid2)) + side - 2*xp; | |||
409 | Er = MULT16_16(mid2, mid2)((opus_val32)(mid2)*(opus_val32)(mid2)) + side + 2*xp; | |||
410 | if (Er < QCONST32(6e-4f, 28)(6e-4f) || El < QCONST32(6e-4f, 28)(6e-4f)) | |||
411 | { | |||
412 | for (j=0;j<N;j++) | |||
413 | Y[j] = X[j]; | |||
414 | return; | |||
415 | } | |||
416 | ||||
417 | #ifdef FIXED_POINT | |||
418 | kl = celt_ilog2(El)>>1; | |||
419 | kr = celt_ilog2(Er)>>1; | |||
420 | #endif | |||
421 | t = VSHR32(El, (kl-7)<<1)(El); | |||
422 | lgain = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
423 | t = VSHR32(Er, (kr-7)<<1)(Er); | |||
424 | rgain = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
425 | ||||
426 | #ifdef FIXED_POINT | |||
427 | if (kl < 7) | |||
428 | kl = 7; | |||
429 | if (kr < 7) | |||
430 | kr = 7; | |||
431 | #endif | |||
432 | ||||
433 | for (j=0;j<N;j++) | |||
434 | { | |||
435 | celt_norm r, l; | |||
436 | /* Apply mid scaling (side is already scaled) */ | |||
437 | l = MULT16_16_Q15(mid, X[j])((mid)*(X[j])); | |||
438 | r = Y[j]; | |||
439 | X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1))((((opus_val32)(lgain)*(opus_val32)(((l)-(r)))))); | |||
440 | Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1))((((opus_val32)(rgain)*(opus_val32)(((l)+(r)))))); | |||
441 | } | |||
442 | } | |||
443 | ||||
444 | /* Decide whether we should spread the pulses in the current frame */ | |||
445 | int spreading_decision(const CELTModeOpusCustomMode *m, celt_norm *X, int *average, | |||
446 | int last_decision, int *hf_average, int *tapset_decision, int update_hf, | |||
447 | int end, int C, int M) | |||
448 | { | |||
449 | int i, c, N0; | |||
450 | int sum = 0, nbBands=0; | |||
451 | const opus_int16 * OPUS_RESTRICT__restrict eBands = m->eBands; | |||
452 | int decision; | |||
453 | int hf_sum=0; | |||
454 | ||||
455 | celt_assert(end>0); | |||
456 | ||||
457 | N0 = M*m->shortMdctSize; | |||
458 | ||||
459 | if (M*(eBands[end]-eBands[end-1]) <= 8) | |||
460 | return SPREAD_NONE(0); | |||
461 | c=0; do { | |||
462 | for (i=0;i<end;i++) | |||
463 | { | |||
464 | int j, N, tmp=0; | |||
465 | int tcount[3] = {0,0,0}; | |||
466 | celt_norm * OPUS_RESTRICT__restrict x = X+M*eBands[i]+c*N0; | |||
467 | N = M*(eBands[i+1]-eBands[i]); | |||
468 | if (N<=8) | |||
469 | continue; | |||
470 | /* Compute rough CDF of |x[j]| */ | |||
471 | for (j=0;j<N;j++) | |||
472 | { | |||
473 | opus_val32 x2N; /* Q13 */ | |||
474 | ||||
475 | x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N)((opus_val32)(((x[j])*(x[j])))*(opus_val32)(N)); | |||
476 | if (x2N < QCONST16(0.25f,13)(0.25f)) | |||
477 | tcount[0]++; | |||
478 | if (x2N < QCONST16(0.0625f,13)(0.0625f)) | |||
479 | tcount[1]++; | |||
480 | if (x2N < QCONST16(0.015625f,13)(0.015625f)) | |||
481 | tcount[2]++; | |||
482 | } | |||
483 | ||||
484 | /* Only include four last bands (8 kHz and up) */ | |||
485 | if (i>m->nbEBands-4) | |||
486 | hf_sum += 32*(tcount[1]+tcount[0])/N; | |||
487 | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | |||
488 | sum += tmp*256; | |||
489 | nbBands++; | |||
490 | } | |||
491 | } while (++c<C); | |||
492 | ||||
493 | if (update_hf) | |||
494 | { | |||
495 | if (hf_sum) | |||
496 | hf_sum /= C*(4-m->nbEBands+end); | |||
497 | *hf_average = (*hf_average+hf_sum)>>1; | |||
498 | hf_sum = *hf_average; | |||
499 | if (*tapset_decision==2) | |||
500 | hf_sum += 4; | |||
501 | else if (*tapset_decision==0) | |||
502 | hf_sum -= 4; | |||
503 | if (hf_sum > 22) | |||
504 | *tapset_decision=2; | |||
505 | else if (hf_sum > 18) | |||
506 | *tapset_decision=1; | |||
507 | else | |||
508 | *tapset_decision=0; | |||
509 | } | |||
510 | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | |||
511 | celt_assert(nbBands>0); /* end has to be non-zero */ | |||
512 | sum /= nbBands; | |||
513 | /* Recursive averaging */ | |||
514 | sum = (sum+*average)>>1; | |||
515 | *average = sum; | |||
516 | /* Hysteresis */ | |||
517 | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | |||
518 | if (sum < 80) | |||
519 | { | |||
520 | decision = SPREAD_AGGRESSIVE(3); | |||
521 | } else if (sum < 256) | |||
522 | { | |||
523 | decision = SPREAD_NORMAL(2); | |||
524 | } else if (sum < 384) | |||
525 | { | |||
526 | decision = SPREAD_LIGHT(1); | |||
527 | } else { | |||
528 | decision = SPREAD_NONE(0); | |||
529 | } | |||
530 | #ifdef FUZZING | |||
531 | decision = rand()&0x3; | |||
532 | *tapset_decision=rand()%3; | |||
533 | #endif | |||
534 | return decision; | |||
535 | } | |||
536 | ||||
537 | /* Indexing table for converting from natural Hadamard to ordery Hadamard | |||
538 | This is essentially a bit-reversed Gray, on top of which we've added | |||
539 | an inversion of the order because we want the DC at the end rather than | |||
540 | the beginning. The lines are for N=2, 4, 8, 16 */ | |||
541 | static const int ordery_table[] = { | |||
542 | 1, 0, | |||
543 | 3, 0, 2, 1, | |||
544 | 7, 0, 4, 3, 6, 1, 5, 2, | |||
545 | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, | |||
546 | }; | |||
547 | ||||
548 | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) | |||
549 | { | |||
550 | int i,j; | |||
551 | VARDECL(celt_norm, tmp); | |||
552 | int N; | |||
553 | SAVE_STACK; | |||
554 | N = N0*stride; | |||
555 | ALLOC(tmp, N, celt_norm)celt_norm tmp[N]; | |||
556 | celt_assert(stride>0); | |||
557 | if (hadamard) | |||
558 | { | |||
559 | const int *ordery = ordery_table+stride-2; | |||
560 | for (i=0;i<stride;i++) | |||
561 | { | |||
562 | for (j=0;j<N0;j++) | |||
563 | tmp[ordery[i]*N0+j] = X[j*stride+i]; | |||
564 | } | |||
565 | } else { | |||
566 | for (i=0;i<stride;i++) | |||
567 | for (j=0;j<N0;j++) | |||
568 | tmp[i*N0+j] = X[j*stride+i]; | |||
569 | } | |||
570 | for (j=0;j<N;j++) | |||
571 | X[j] = tmp[j]; | |||
| ||||
572 | RESTORE_STACK; | |||
573 | } | |||
574 | ||||
575 | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) | |||
576 | { | |||
577 | int i,j; | |||
578 | VARDECL(celt_norm, tmp); | |||
579 | int N; | |||
580 | SAVE_STACK; | |||
581 | N = N0*stride; | |||
582 | ALLOC(tmp, N, celt_norm)celt_norm tmp[N]; | |||
583 | if (hadamard) | |||
584 | { | |||
585 | const int *ordery = ordery_table+stride-2; | |||
586 | for (i=0;i<stride;i++) | |||
587 | for (j=0;j<N0;j++) | |||
588 | tmp[j*stride+i] = X[ordery[i]*N0+j]; | |||
589 | } else { | |||
590 | for (i=0;i<stride;i++) | |||
591 | for (j=0;j<N0;j++) | |||
592 | tmp[j*stride+i] = X[i*N0+j]; | |||
593 | } | |||
594 | for (j=0;j<N;j++) | |||
595 | X[j] = tmp[j]; | |||
596 | RESTORE_STACK; | |||
597 | } | |||
598 | ||||
599 | void haar1(celt_norm *X, int N0, int stride) | |||
600 | { | |||
601 | int i, j; | |||
602 | N0 >>= 1; | |||
603 | for (i=0;i<stride;i++) | |||
604 | for (j=0;j<N0;j++) | |||
605 | { | |||
606 | celt_norm tmp1, tmp2; | |||
607 | tmp1 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*2*j+i])(((.70710678f))*(X[stride*2*j+i])); | |||
608 | tmp2 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*(2*j+1)+i])(((.70710678f))*(X[stride*(2*j+1)+i])); | |||
609 | X[stride*2*j+i] = tmp1 + tmp2; | |||
610 | X[stride*(2*j+1)+i] = tmp1 - tmp2; | |||
611 | } | |||
612 | } | |||
613 | ||||
614 | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) | |||
615 | { | |||
616 | static const opus_int16 exp2_table8[8] = | |||
617 | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; | |||
618 | int qn, qb; | |||
619 | int N2 = 2*N-1; | |||
620 | if (stereo && N==2) | |||
621 | N2--; | |||
622 | /* The upper limit ensures that in a stereo split with itheta==16384, we'll | |||
623 | always have enough bits left over to code at least one pulse in the | |||
624 | side; otherwise it would collapse, since it doesn't get folded. */ | |||
625 | qb = IMIN(b-pulse_cap-(4<<BITRES), (b+N2*offset)/N2)((b-pulse_cap-(4<<3)) < ((b+N2*offset)/N2) ? (b-pulse_cap -(4<<3)) : ((b+N2*offset)/N2)); | |||
626 | ||||
627 | qb = IMIN(8<<BITRES, qb)((8<<3) < (qb) ? (8<<3) : (qb)); | |||
628 | ||||
629 | if (qb<(1<<BITRES3>>1)) { | |||
630 | qn = 1; | |||
631 | } else { | |||
632 | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES3)); | |||
633 | qn = (qn+1)>>1<<1; | |||
634 | } | |||
635 | celt_assert(qn <= 256); | |||
636 | return qn; | |||
637 | } | |||
638 | ||||
639 | struct band_ctx { | |||
640 | int encode; | |||
641 | const CELTModeOpusCustomMode *m; | |||
642 | int i; | |||
643 | int intensity; | |||
644 | int spread; | |||
645 | int tf_change; | |||
646 | ec_ctx *ec; | |||
647 | opus_int32 remaining_bits; | |||
648 | const celt_ener *bandE; | |||
649 | opus_uint32 seed; | |||
650 | }; | |||
651 | ||||
652 | struct split_ctx { | |||
653 | int inv; | |||
654 | int imid; | |||
655 | int iside; | |||
656 | int delta; | |||
657 | int itheta; | |||
658 | int qalloc; | |||
659 | }; | |||
660 | ||||
661 | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, | |||
662 | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, | |||
663 | int LM, | |||
664 | int stereo, int *fill) | |||
665 | { | |||
666 | int qn; | |||
667 | int itheta=0; | |||
668 | int delta; | |||
669 | int imid, iside; | |||
670 | int qalloc; | |||
671 | int pulse_cap; | |||
672 | int offset; | |||
673 | opus_int32 tell; | |||
674 | int inv=0; | |||
675 | int encode; | |||
676 | const CELTModeOpusCustomMode *m; | |||
677 | int i; | |||
678 | int intensity; | |||
679 | ec_ctx *ec; | |||
680 | const celt_ener *bandE; | |||
681 | ||||
682 | encode = ctx->encode; | |||
683 | m = ctx->m; | |||
684 | i = ctx->i; | |||
685 | intensity = ctx->intensity; | |||
686 | ec = ctx->ec; | |||
687 | bandE = ctx->bandE; | |||
688 | ||||
689 | /* Decide on the resolution to give to the split parameter theta */ | |||
690 | pulse_cap = m->logN[i]+LM*(1<<BITRES3); | |||
691 | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE16 : QTHETA_OFFSET4); | |||
692 | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | |||
693 | if (stereo && i>=intensity) | |||
694 | qn = 1; | |||
695 | if (encode) | |||
696 | { | |||
697 | /* theta is the atan() of the ratio between the (normalized) | |||
698 | side and mid. With just that parameter, we can re-scale both | |||
699 | mid and side because we know that 1) they have unit norm and | |||
700 | 2) they are orthogonal. */ | |||
701 | itheta = stereo_itheta(X, Y, stereo, N); | |||
702 | } | |||
703 | tell = ec_tell_frac(ec); | |||
704 | if (qn!=1) | |||
705 | { | |||
706 | if (encode) | |||
707 | itheta = (itheta*qn+8192)>>14; | |||
708 | ||||
709 | /* Entropy coding of the angle. We use a uniform pdf for the | |||
710 | time split, a step for stereo, and a triangular one for the rest. */ | |||
711 | if (stereo && N>2) | |||
712 | { | |||
713 | int p0 = 3; | |||
714 | int x = itheta; | |||
715 | int x0 = qn/2; | |||
716 | int ft = p0*(x0+1) + x0; | |||
717 | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | |||
718 | if (encode) | |||
719 | { | |||
720 | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | |||
721 | } else { | |||
722 | int fs; | |||
723 | fs=ec_decode(ec,ft); | |||
724 | if (fs<(x0+1)*p0) | |||
725 | x=fs/p0; | |||
726 | else | |||
727 | x=x0+1+(fs-(x0+1)*p0); | |||
728 | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | |||
729 | itheta = x; | |||
730 | } | |||
731 | } else if (B0>1 || stereo) { | |||
732 | /* Uniform pdf */ | |||
733 | if (encode) | |||
734 | ec_enc_uint(ec, itheta, qn+1); | |||
735 | else | |||
736 | itheta = ec_dec_uint(ec, qn+1); | |||
737 | } else { | |||
738 | int fs=1, ft; | |||
739 | ft = ((qn>>1)+1)*((qn>>1)+1); | |||
740 | if (encode) | |||
741 | { | |||
742 | int fl; | |||
743 | ||||
744 | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | |||
745 | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | |||
746 | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | |||
747 | ||||
748 | ec_encode(ec, fl, fl+fs, ft); | |||
749 | } else { | |||
750 | /* Triangular pdf */ | |||
751 | int fl=0; | |||
752 | int fm; | |||
753 | fm = ec_decode(ec, ft); | |||
754 | ||||
755 | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | |||
756 | { | |||
757 | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | |||
758 | fs = itheta + 1; | |||
759 | fl = itheta*(itheta + 1)>>1; | |||
760 | } | |||
761 | else | |||
762 | { | |||
763 | itheta = (2*(qn + 1) | |||
764 | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | |||
765 | fs = qn + 1 - itheta; | |||
766 | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | |||
767 | } | |||
768 | ||||
769 | ec_dec_update(ec, fl, fl+fs, ft); | |||
770 | } | |||
771 | } | |||
772 | itheta = (opus_int32)itheta*16384/qn; | |||
773 | if (encode && stereo) | |||
774 | { | |||
775 | if (itheta==0) | |||
776 | intensity_stereo(m, X, Y, bandE, i, N); | |||
777 | else | |||
778 | stereo_split(X, Y, N); | |||
779 | } | |||
780 | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | |||
781 | Let's do that at higher complexity */ | |||
782 | } else if (stereo) { | |||
783 | if (encode) | |||
784 | { | |||
785 | inv = itheta > 8192; | |||
786 | if (inv) | |||
787 | { | |||
788 | int j; | |||
789 | for (j=0;j<N;j++) | |||
790 | Y[j] = -Y[j]; | |||
791 | } | |||
792 | intensity_stereo(m, X, Y, bandE, i, N); | |||
793 | } | |||
794 | if (*b>2<<BITRES3 && ctx->remaining_bits > 2<<BITRES3) | |||
795 | { | |||
796 | if (encode) | |||
797 | ec_enc_bit_logp(ec, inv, 2); | |||
798 | else | |||
799 | inv = ec_dec_bit_logp(ec, 2); | |||
800 | } else | |||
801 | inv = 0; | |||
802 | itheta = 0; | |||
803 | } | |||
804 | qalloc = ec_tell_frac(ec) - tell; | |||
805 | *b -= qalloc; | |||
806 | ||||
807 | if (itheta == 0) | |||
808 | { | |||
809 | imid = 32767; | |||
810 | iside = 0; | |||
811 | *fill &= (1<<B)-1; | |||
812 | delta = -16384; | |||
813 | } else if (itheta == 16384) | |||
814 | { | |||
815 | imid = 0; | |||
816 | iside = 32767; | |||
817 | *fill &= ((1<<B)-1)<<B; | |||
818 | delta = 16384; | |||
819 | } else { | |||
820 | imid = bitexact_cos((opus_int16)itheta); | |||
821 | iside = bitexact_cos((opus_int16)(16384-itheta)); | |||
822 | /* This is the mid vs side allocation that minimizes squared error | |||
823 | in that band. */ | |||
824 | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid))((16384+((opus_int32)(opus_int16)((N-1)<<7)*(opus_int16 )(bitexact_log2tan(iside,imid))))>>15); | |||
825 | } | |||
826 | ||||
827 | sctx->inv = inv; | |||
828 | sctx->imid = imid; | |||
829 | sctx->iside = iside; | |||
830 | sctx->delta = delta; | |||
831 | sctx->itheta = itheta; | |||
832 | sctx->qalloc = qalloc; | |||
833 | } | |||
834 | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, | |||
835 | celt_norm *lowband_out) | |||
836 | { | |||
837 | #ifdef RESYNTH | |||
838 | int resynth = 1; | |||
839 | #else | |||
840 | int resynth = !ctx->encode; | |||
841 | #endif | |||
842 | int c; | |||
843 | int stereo; | |||
844 | celt_norm *x = X; | |||
845 | int encode; | |||
846 | ec_ctx *ec; | |||
847 | ||||
848 | encode = ctx->encode; | |||
849 | ec = ctx->ec; | |||
850 | ||||
851 | stereo = Y != NULL((void*)0); | |||
852 | c=0; do { | |||
853 | int sign=0; | |||
854 | if (ctx->remaining_bits>=1<<BITRES3) | |||
855 | { | |||
856 | if (encode) | |||
857 | { | |||
858 | sign = x[0]<0; | |||
859 | ec_enc_bits(ec, sign, 1); | |||
860 | } else { | |||
861 | sign = ec_dec_bits(ec, 1); | |||
862 | } | |||
863 | ctx->remaining_bits -= 1<<BITRES3; | |||
864 | b-=1<<BITRES3; | |||
865 | } | |||
866 | if (resynth) | |||
867 | x[0] = sign ? -NORM_SCALING1.f : NORM_SCALING1.f; | |||
868 | x = Y; | |||
869 | } while (++c<1+stereo); | |||
870 | if (lowband_out) | |||
871 | lowband_out[0] = SHR16(X[0],4)(X[0]); | |||
872 | return 1; | |||
873 | } | |||
874 | ||||
875 | /* This function is responsible for encoding and decoding a mono partition. | |||
876 | It can split the band in two and transmit the energy difference with | |||
877 | the two half-bands. It can be called recursively so bands can end up being | |||
878 | split in 8 parts. */ | |||
879 | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, | |||
880 | int N, int b, int B, celt_norm *lowband, | |||
881 | int LM, | |||
882 | opus_val16 gain, int fill) | |||
883 | { | |||
884 | const unsigned char *cache; | |||
885 | int q; | |||
886 | int curr_bits; | |||
887 | int imid=0, iside=0; | |||
888 | int B0=B; | |||
889 | opus_val16 mid=0, side=0; | |||
890 | unsigned cm=0; | |||
891 | #ifdef RESYNTH | |||
892 | int resynth = 1; | |||
893 | #else | |||
894 | int resynth = !ctx->encode; | |||
895 | #endif | |||
896 | celt_norm *Y=NULL((void*)0); | |||
897 | int encode; | |||
898 | const CELTModeOpusCustomMode *m; | |||
899 | int i; | |||
900 | int spread; | |||
901 | ec_ctx *ec; | |||
902 | ||||
903 | encode = ctx->encode; | |||
904 | m = ctx->m; | |||
905 | i = ctx->i; | |||
906 | spread = ctx->spread; | |||
907 | ec = ctx->ec; | |||
908 | ||||
909 | /* If we need 1.5 more bit than we can produce, split the band in two. */ | |||
910 | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | |||
911 | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | |||
912 | { | |||
913 | int mbits, sbits, delta; | |||
914 | int itheta; | |||
915 | int qalloc; | |||
916 | struct split_ctx sctx; | |||
917 | celt_norm *next_lowband2=NULL((void*)0); | |||
918 | opus_int32 rebalance; | |||
919 | ||||
920 | N >>= 1; | |||
921 | Y = X+N; | |||
922 | LM -= 1; | |||
923 | if (B==1) | |||
924 | fill = (fill&1)|(fill<<1); | |||
925 | B = (B+1)>>1; | |||
926 | ||||
927 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, | |||
928 | LM, 0, &fill); | |||
929 | imid = sctx.imid; | |||
930 | iside = sctx.iside; | |||
931 | delta = sctx.delta; | |||
932 | itheta = sctx.itheta; | |||
933 | qalloc = sctx.qalloc; | |||
934 | #ifdef FIXED_POINT | |||
935 | mid = imid; | |||
936 | side = iside; | |||
937 | #else | |||
938 | mid = (1.f/32768)*imid; | |||
939 | side = (1.f/32768)*iside; | |||
940 | #endif | |||
941 | ||||
942 | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | |||
943 | if (B0>1 && (itheta&0x3fff)) | |||
944 | { | |||
945 | if (itheta > 8192) | |||
946 | /* Rough approximation for pre-echo masking */ | |||
947 | delta -= delta>>(4-LM); | |||
948 | else | |||
949 | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | |||
950 | delta = IMIN(0, delta + (N<<BITRES>>(5-LM)))((0) < (delta + (N<<3>>(5-LM))) ? (0) : (delta + (N<<3>>(5-LM)))); | |||
951 | } | |||
952 | mbits = IMAX(0, IMIN(b, (b-delta)/2))((0) > (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2))) ? ( 0) : (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2)))); | |||
953 | sbits = b-mbits; | |||
954 | ctx->remaining_bits -= qalloc; | |||
955 | ||||
956 | if (lowband) | |||
957 | next_lowband2 = lowband+N; /* >32-bit split case */ | |||
958 | ||||
959 | rebalance = ctx->remaining_bits; | |||
960 | if (mbits >= sbits) | |||
961 | { | |||
962 | cm = quant_partition(ctx, X, N, mbits, B, | |||
963 | lowband, LM, | |||
964 | MULT16_16_P15(gain,mid)((gain)*(mid)), fill); | |||
965 | rebalance = mbits - (rebalance-ctx->remaining_bits); | |||
966 | if (rebalance > 3<<BITRES3 && itheta!=0) | |||
967 | sbits += rebalance - (3<<BITRES3); | |||
968 | cm |= quant_partition(ctx, Y, N, sbits, B, | |||
969 | next_lowband2, LM, | |||
970 | MULT16_16_P15(gain,side)((gain)*(side)), fill>>B)<<(B0>>1); | |||
971 | } else { | |||
972 | cm = quant_partition(ctx, Y, N, sbits, B, | |||
973 | next_lowband2, LM, | |||
974 | MULT16_16_P15(gain,side)((gain)*(side)), fill>>B)<<(B0>>1); | |||
975 | rebalance = sbits - (rebalance-ctx->remaining_bits); | |||
976 | if (rebalance > 3<<BITRES3 && itheta!=16384) | |||
977 | mbits += rebalance - (3<<BITRES3); | |||
978 | cm |= quant_partition(ctx, X, N, mbits, B, | |||
979 | lowband, LM, | |||
980 | MULT16_16_P15(gain,mid)((gain)*(mid)), fill); | |||
981 | } | |||
982 | } else { | |||
983 | /* This is the basic no-split case */ | |||
984 | q = bits2pulses(m, i, LM, b); | |||
985 | curr_bits = pulses2bits(m, i, LM, q); | |||
986 | ctx->remaining_bits -= curr_bits; | |||
987 | ||||
988 | /* Ensures we can never bust the budget */ | |||
989 | while (ctx->remaining_bits < 0 && q > 0) | |||
990 | { | |||
991 | ctx->remaining_bits += curr_bits; | |||
992 | q--; | |||
993 | curr_bits = pulses2bits(m, i, LM, q); | |||
994 | ctx->remaining_bits -= curr_bits; | |||
995 | } | |||
996 | ||||
997 | if (q!=0) | |||
998 | { | |||
999 | int K = get_pulses(q); | |||
1000 | ||||
1001 | /* Finally do the actual quantization */ | |||
1002 | if (encode) | |||
1003 | { | |||
1004 | cm = alg_quant(X, N, K, spread, B, ec | |||
1005 | #ifdef RESYNTH | |||
1006 | , gain | |||
1007 | #endif | |||
1008 | ); | |||
1009 | } else { | |||
1010 | cm = alg_unquant(X, N, K, spread, B, ec, gain); | |||
1011 | } | |||
1012 | } else { | |||
1013 | /* If there's no pulse, fill the band anyway */ | |||
1014 | int j; | |||
1015 | if (resynth) | |||
1016 | { | |||
1017 | unsigned cm_mask; | |||
1018 | /* B can be as large as 16, so this shift might overflow an int on a | |||
1019 | 16-bit platform; use a long to get defined behavior.*/ | |||
1020 | cm_mask = (unsigned)(1UL<<B)-1; | |||
1021 | fill &= cm_mask; | |||
1022 | if (!fill) | |||
1023 | { | |||
1024 | for (j=0;j<N;j++) | |||
1025 | X[j] = 0; | |||
1026 | } else { | |||
1027 | if (lowband == NULL((void*)0)) | |||
1028 | { | |||
1029 | /* Noise */ | |||
1030 | for (j=0;j<N;j++) | |||
1031 | { | |||
1032 | ctx->seed = celt_lcg_rand(ctx->seed); | |||
1033 | X[j] = (celt_norm)((opus_int32)ctx->seed>>20); | |||
1034 | } | |||
1035 | cm = cm_mask; | |||
1036 | } else { | |||
1037 | /* Folded spectrum */ | |||
1038 | for (j=0;j<N;j++) | |||
1039 | { | |||
1040 | opus_val16 tmp; | |||
1041 | ctx->seed = celt_lcg_rand(ctx->seed); | |||
1042 | /* About 48 dB below the "normal" folding level */ | |||
1043 | tmp = QCONST16(1.0f/256, 10)(1.0f/256); | |||
1044 | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | |||
1045 | X[j] = lowband[j]+tmp; | |||
1046 | } | |||
1047 | cm = fill; | |||
1048 | } | |||
1049 | renormalise_vector(X, N, gain); | |||
1050 | } | |||
1051 | } | |||
1052 | } | |||
1053 | } | |||
1054 | ||||
1055 | return cm; | |||
1056 | } | |||
1057 | ||||
1058 | ||||
1059 | /* This function is responsible for encoding and decoding a band for the mono case. */ | |||
1060 | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, | |||
1061 | int N, int b, int B, celt_norm *lowband, | |||
1062 | int LM, celt_norm *lowband_out, | |||
1063 | opus_val16 gain, celt_norm *lowband_scratch, int fill) | |||
1064 | { | |||
1065 | int N0=N; | |||
1066 | int N_B=N; | |||
1067 | int N_B0; | |||
1068 | int B0=B; | |||
1069 | int time_divide=0; | |||
1070 | int recombine=0; | |||
1071 | int longBlocks; | |||
1072 | unsigned cm=0; | |||
1073 | #ifdef RESYNTH | |||
1074 | int resynth = 1; | |||
1075 | #else | |||
1076 | int resynth = !ctx->encode; | |||
1077 | #endif | |||
1078 | int k; | |||
1079 | int encode; | |||
1080 | int tf_change; | |||
1081 | ||||
1082 | encode = ctx->encode; | |||
1083 | tf_change = ctx->tf_change; | |||
1084 | ||||
1085 | longBlocks = B0==1; | |||
| ||||
1086 | ||||
1087 | N_B /= B; | |||
1088 | ||||
1089 | /* Special case for one sample */ | |||
1090 | if (N==1) | |||
1091 | { | |||
1092 | return quant_band_n1(ctx, X, NULL((void*)0), b, lowband_out); | |||
1093 | } | |||
1094 | ||||
1095 | if (tf_change>0) | |||
1096 | recombine = tf_change; | |||
1097 | /* Band recombining to increase frequency resolution */ | |||
1098 | ||||
1099 | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | |||
1100 | { | |||
1101 | int j; | |||
1102 | for (j=0;j<N;j++) | |||
1103 | lowband_scratch[j] = lowband[j]; | |||
1104 | lowband = lowband_scratch; | |||
1105 | } | |||
1106 | ||||
1107 | for (k=0;k<recombine;k++) | |||
1108 | { | |||
1109 | static const unsigned char bit_interleave_table[16]={ | |||
1110 | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | |||
1111 | }; | |||
1112 | if (encode) | |||
1113 | haar1(X, N>>k, 1<<k); | |||
1114 | if (lowband) | |||
1115 | haar1(lowband, N>>k, 1<<k); | |||
1116 | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | |||
1117 | } | |||
1118 | B>>=recombine; | |||
1119 | N_B<<=recombine; | |||
1120 | ||||
1121 | /* Increasing the time resolution */ | |||
1122 | while ((N_B&1) == 0 && tf_change<0) | |||
1123 | { | |||
1124 | if (encode) | |||
1125 | haar1(X, N_B, B); | |||
1126 | if (lowband) | |||
1127 | haar1(lowband, N_B, B); | |||
1128 | fill |= fill<<B; | |||
1129 | B <<= 1; | |||
1130 | N_B >>= 1; | |||
1131 | time_divide++; | |||
1132 | tf_change++; | |||
1133 | } | |||
1134 | B0=B; | |||
1135 | N_B0 = N_B; | |||
1136 | ||||
1137 | /* Reorganize the samples in time order instead of frequency order */ | |||
1138 | if (B0>1) | |||
1139 | { | |||
1140 | if (encode) | |||
1141 | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | |||
1142 | if (lowband) | |||
1143 | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | |||
1144 | } | |||
1145 | ||||
1146 | cm = quant_partition(ctx, X, N, b, B, lowband, | |||
1147 | LM, gain, fill); | |||
1148 | ||||
1149 | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | |||
1150 | if (resynth) | |||
1151 | { | |||
1152 | /* Undo the sample reorganization going from time order to frequency order */ | |||
1153 | if (B0>1) | |||
1154 | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | |||
1155 | ||||
1156 | /* Undo time-freq changes that we did earlier */ | |||
1157 | N_B = N_B0; | |||
1158 | B = B0; | |||
1159 | for (k=0;k<time_divide;k++) | |||
1160 | { | |||
1161 | B >>= 1; | |||
1162 | N_B <<= 1; | |||
1163 | cm |= cm>>B; | |||
1164 | haar1(X, N_B, B); | |||
1165 | } | |||
1166 | ||||
1167 | for (k=0;k<recombine;k++) | |||
1168 | { | |||
1169 | static const unsigned char bit_deinterleave_table[16]={ | |||
1170 | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | |||
1171 | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | |||
1172 | }; | |||
1173 | cm = bit_deinterleave_table[cm]; | |||
1174 | haar1(X, N0>>k, 1<<k); | |||
1175 | } | |||
1176 | B<<=recombine; | |||
1177 | ||||
1178 | /* Scale output for later folding */ | |||
1179 | if (lowband_out) | |||
1180 | { | |||
1181 | int j; | |||
1182 | opus_val16 n; | |||
1183 | n = celt_sqrt(SHL32(EXTEND32(N0),22))((float)sqrt(((N0)))); | |||
1184 | for (j=0;j<N0;j++) | |||
1185 | lowband_out[j] = MULT16_16_Q15(n,X[j])((n)*(X[j])); | |||
1186 | } | |||
1187 | cm &= (1<<B)-1; | |||
1188 | } | |||
1189 | return cm; | |||
1190 | } | |||
1191 | ||||
1192 | ||||
1193 | /* This function is responsible for encoding and decoding a band for the stereo case. */ | |||
1194 | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, | |||
1195 | int N, int b, int B, celt_norm *lowband, | |||
1196 | int LM, celt_norm *lowband_out, | |||
1197 | celt_norm *lowband_scratch, int fill) | |||
1198 | { | |||
1199 | int imid=0, iside=0; | |||
1200 | int inv = 0; | |||
1201 | opus_val16 mid=0, side=0; | |||
1202 | unsigned cm=0; | |||
1203 | #ifdef RESYNTH | |||
1204 | int resynth = 1; | |||
1205 | #else | |||
1206 | int resynth = !ctx->encode; | |||
1207 | #endif | |||
1208 | int mbits, sbits, delta; | |||
1209 | int itheta; | |||
1210 | int qalloc; | |||
1211 | struct split_ctx sctx; | |||
1212 | int orig_fill; | |||
1213 | int encode; | |||
1214 | ec_ctx *ec; | |||
1215 | ||||
1216 | encode = ctx->encode; | |||
1217 | ec = ctx->ec; | |||
1218 | ||||
1219 | /* Special case for one sample */ | |||
1220 | if (N==1) | |||
1221 | { | |||
1222 | return quant_band_n1(ctx, X, Y, b, lowband_out); | |||
1223 | } | |||
1224 | ||||
1225 | orig_fill = fill; | |||
1226 | ||||
1227 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, | |||
1228 | LM, 1, &fill); | |||
1229 | inv = sctx.inv; | |||
1230 | imid = sctx.imid; | |||
1231 | iside = sctx.iside; | |||
1232 | delta = sctx.delta; | |||
1233 | itheta = sctx.itheta; | |||
1234 | qalloc = sctx.qalloc; | |||
1235 | #ifdef FIXED_POINT | |||
1236 | mid = imid; | |||
1237 | side = iside; | |||
1238 | #else | |||
1239 | mid = (1.f/32768)*imid; | |||
1240 | side = (1.f/32768)*iside; | |||
1241 | #endif | |||
1242 | ||||
1243 | /* This is a special case for N=2 that only works for stereo and takes | |||
1244 | advantage of the fact that mid and side are orthogonal to encode | |||
1245 | the side with just one bit. */ | |||
1246 | if (N==2) | |||
1247 | { | |||
1248 | int c; | |||
1249 | int sign=0; | |||
1250 | celt_norm *x2, *y2; | |||
1251 | mbits = b; | |||
1252 | sbits = 0; | |||
1253 | /* Only need one bit for the side. */ | |||
1254 | if (itheta != 0 && itheta != 16384) | |||
1255 | sbits = 1<<BITRES3; | |||
1256 | mbits -= sbits; | |||
1257 | c = itheta > 8192; | |||
1258 | ctx->remaining_bits -= qalloc+sbits; | |||
1259 | ||||
1260 | x2 = c ? Y : X; | |||
1261 | y2 = c ? X : Y; | |||
1262 | if (sbits) | |||
1263 | { | |||
1264 | if (encode) | |||
1265 | { | |||
1266 | /* Here we only need to encode a sign for the side. */ | |||
1267 | sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; | |||
1268 | ec_enc_bits(ec, sign, 1); | |||
1269 | } else { | |||
1270 | sign = ec_dec_bits(ec, 1); | |||
1271 | } | |||
1272 | } | |||
1273 | sign = 1-2*sign; | |||
1274 | /* We use orig_fill here because we want to fold the side, but if | |||
1275 | itheta==16384, we'll have cleared the low bits of fill. */ | |||
1276 | cm = quant_band(ctx, x2, N, mbits, B, lowband, | |||
1277 | LM, lowband_out, Q15ONE1.0f, lowband_scratch, orig_fill); | |||
1278 | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | |||
1279 | and there's no need to worry about mixing with the other channel. */ | |||
1280 | y2[0] = -sign*x2[1]; | |||
1281 | y2[1] = sign*x2[0]; | |||
1282 | if (resynth) | |||
1283 | { | |||
1284 | celt_norm tmp; | |||
1285 | X[0] = MULT16_16_Q15(mid, X[0])((mid)*(X[0])); | |||
1286 | X[1] = MULT16_16_Q15(mid, X[1])((mid)*(X[1])); | |||
1287 | Y[0] = MULT16_16_Q15(side, Y[0])((side)*(Y[0])); | |||
1288 | Y[1] = MULT16_16_Q15(side, Y[1])((side)*(Y[1])); | |||
1289 | tmp = X[0]; | |||
1290 | X[0] = SUB16(tmp,Y[0])((tmp)-(Y[0])); | |||
1291 | Y[0] = ADD16(tmp,Y[0])((tmp)+(Y[0])); | |||
1292 | tmp = X[1]; | |||
1293 | X[1] = SUB16(tmp,Y[1])((tmp)-(Y[1])); | |||
1294 | Y[1] = ADD16(tmp,Y[1])((tmp)+(Y[1])); | |||
1295 | } | |||
1296 | } else { | |||
1297 | /* "Normal" split code */ | |||
1298 | opus_int32 rebalance; | |||
1299 | ||||
1300 | mbits = IMAX(0, IMIN(b, (b-delta)/2))((0) > (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2))) ? ( 0) : (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2)))); | |||
1301 | sbits = b-mbits; | |||
1302 | ctx->remaining_bits -= qalloc; | |||
1303 | ||||
1304 | rebalance = ctx->remaining_bits; | |||
1305 | if (mbits >= sbits) | |||
1306 | { | |||
1307 | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | |||
1308 | mid for folding later. */ | |||
1309 | cm = quant_band(ctx, X, N, mbits, B, | |||
1310 | lowband, LM, lowband_out, | |||
1311 | Q15ONE1.0f, lowband_scratch, fill); | |||
1312 | rebalance = mbits - (rebalance-ctx->remaining_bits); | |||
1313 | if (rebalance > 3<<BITRES3 && itheta!=0) | |||
1314 | sbits += rebalance - (3<<BITRES3); | |||
1315 | ||||
1316 | /* For a stereo split, the high bits of fill are always zero, so no | |||
1317 | folding will be done to the side. */ | |||
1318 | cm |= quant_band(ctx, Y, N, sbits, B, | |||
1319 | NULL((void*)0), LM, NULL((void*)0), | |||
1320 | side, NULL((void*)0), fill>>B); | |||
1321 | } else { | |||
1322 | /* For a stereo split, the high bits of fill are always zero, so no | |||
1323 | folding will be done to the side. */ | |||
1324 | cm = quant_band(ctx, Y, N, sbits, B, | |||
1325 | NULL((void*)0), LM, NULL((void*)0), | |||
1326 | side, NULL((void*)0), fill>>B); | |||
1327 | rebalance = sbits - (rebalance-ctx->remaining_bits); | |||
1328 | if (rebalance > 3<<BITRES3 && itheta!=16384) | |||
1329 | mbits += rebalance - (3<<BITRES3); | |||
1330 | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | |||
1331 | mid for folding later. */ | |||
1332 | cm |= quant_band(ctx, X, N, mbits, B, | |||
1333 | lowband, LM, lowband_out, | |||
1334 | Q15ONE1.0f, lowband_scratch, fill); | |||
1335 | } | |||
1336 | } | |||
1337 | ||||
1338 | ||||
1339 | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | |||
1340 | if (resynth) | |||
1341 | { | |||
1342 | if (N!=2) | |||
1343 | stereo_merge(X, Y, mid, N); | |||
1344 | if (inv) | |||
1345 | { | |||
1346 | int j; | |||
1347 | for (j=0;j<N;j++) | |||
1348 | Y[j] = -Y[j]; | |||
1349 | } | |||
1350 | } | |||
1351 | return cm; | |||
1352 | } | |||
1353 | ||||
1354 | ||||
1355 | void quant_all_bands(int encode, const CELTModeOpusCustomMode *m, int start, int end, | |||
1356 | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses, | |||
1357 | int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, | |||
1358 | opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, opus_uint32 *seed) | |||
1359 | { | |||
1360 | int i; | |||
1361 | opus_int32 remaining_bits; | |||
1362 | const opus_int16 * OPUS_RESTRICT__restrict eBands = m->eBands; | |||
1363 | celt_norm * OPUS_RESTRICT__restrict norm, * OPUS_RESTRICT__restrict norm2; | |||
1364 | VARDECL(celt_norm, _norm); | |||
1365 | celt_norm *lowband_scratch; | |||
1366 | int B; | |||
1367 | int M; | |||
1368 | int lowband_offset; | |||
1369 | int update_lowband = 1; | |||
1370 | int C = Y_ != NULL((void*)0) ? 2 : 1; | |||
1371 | int norm_offset; | |||
1372 | #ifdef RESYNTH | |||
1373 | int resynth = 1; | |||
1374 | #else | |||
1375 | int resynth = !encode; | |||
1376 | #endif | |||
1377 | struct band_ctx ctx; | |||
1378 | SAVE_STACK; | |||
1379 | ||||
1380 | M = 1<<LM; | |||
1381 | B = shortBlocks ? M : 1; | |||
1382 | norm_offset = M*eBands[start]; | |||
1383 | /* No need to allocate norm for the last band because we don't need an | |||
1384 | output in that band. */ | |||
1385 | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm)celt_norm _norm[C*(M*eBands[m->nbEBands-1]-norm_offset)]; | |||
1386 | norm = _norm; | |||
1387 | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | |||
1388 | /* We can use the last band as scratch space because we don't need that | |||
1389 | scratch space for the last band. */ | |||
1390 | lowband_scratch = X_+M*eBands[m->nbEBands-1]; | |||
1391 | ||||
1392 | lowband_offset = 0; | |||
1393 | ctx.bandE = bandE; | |||
1394 | ctx.ec = ec; | |||
1395 | ctx.encode = encode; | |||
1396 | ctx.intensity = intensity; | |||
1397 | ctx.m = m; | |||
1398 | ctx.seed = *seed; | |||
1399 | ctx.spread = spread; | |||
1400 | for (i=start;i<end;i++) | |||
1401 | { | |||
1402 | opus_int32 tell; | |||
1403 | int b; | |||
1404 | int N; | |||
1405 | opus_int32 curr_balance; | |||
1406 | int effective_lowband=-1; | |||
1407 | celt_norm * OPUS_RESTRICT__restrict X, * OPUS_RESTRICT__restrict Y; | |||
1408 | int tf_change=0; | |||
1409 | unsigned x_cm; | |||
1410 | unsigned y_cm; | |||
1411 | int last; | |||
1412 | ||||
1413 | ctx.i = i; | |||
1414 | last = (i==end-1); | |||
1415 | ||||
1416 | X = X_+M*eBands[i]; | |||
1417 | if (Y_!=NULL((void*)0)) | |||
1418 | Y = Y_+M*eBands[i]; | |||
1419 | else | |||
1420 | Y = NULL((void*)0); | |||
1421 | N = M*eBands[i+1]-M*eBands[i]; | |||
1422 | tell = ec_tell_frac(ec); | |||
1423 | ||||
1424 | /* Compute how many bits we want to allocate to this band */ | |||
1425 | if (i != start) | |||
1426 | balance -= tell; | |||
1427 | remaining_bits = total_bits-tell-1; | |||
1428 | ctx.remaining_bits = remaining_bits; | |||
1429 | if (i <= codedBands-1) | |||
1430 | { | |||
1431 | curr_balance = balance / IMIN(3, codedBands-i)((3) < (codedBands-i) ? (3) : (codedBands-i)); | |||
1432 | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)))((0) > (((16383) < (((remaining_bits+1) < (pulses[i] +curr_balance) ? (remaining_bits+1) : (pulses[i]+curr_balance ))) ? (16383) : (((remaining_bits+1) < (pulses[i]+curr_balance ) ? (remaining_bits+1) : (pulses[i]+curr_balance))))) ? (0) : (((16383) < (((remaining_bits+1) < (pulses[i]+curr_balance ) ? (remaining_bits+1) : (pulses[i]+curr_balance))) ? (16383) : (((remaining_bits+1) < (pulses[i]+curr_balance) ? (remaining_bits +1) : (pulses[i]+curr_balance)))))); | |||
1433 | } else { | |||
1434 | b = 0; | |||
1435 | } | |||
1436 | ||||
1437 | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | |||
1438 | lowband_offset = i; | |||
1439 | ||||
1440 | tf_change = tf_res[i]; | |||
1441 | ctx.tf_change = tf_change; | |||
1442 | if (i>=m->effEBands) | |||
1443 | { | |||
1444 | X=norm; | |||
1445 | if (Y_!=NULL((void*)0)) | |||
1446 | Y = norm; | |||
1447 | lowband_scratch = NULL((void*)0); | |||
1448 | } | |||
1449 | if (i==end-1) | |||
1450 | lowband_scratch = NULL((void*)0); | |||
1451 | ||||
1452 | /* Get a conservative estimate of the collapse_mask's for the bands we're | |||
1453 | going to be folding from. */ | |||
1454 | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE(3) || B>1 || tf_change<0)) | |||
1455 | { | |||
1456 | int fold_start; | |||
1457 | int fold_end; | |||
1458 | int fold_i; | |||
1459 | /* This ensures we never repeat spectral content within one band */ | |||
1460 | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N)((0) > (M*eBands[lowband_offset]-norm_offset-N) ? (0) : (M *eBands[lowband_offset]-norm_offset-N)); | |||
1461 | fold_start = lowband_offset; | |||
1462 | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | |||
1463 | fold_end = lowband_offset-1; | |||
1464 | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | |||
1465 | x_cm = y_cm = 0; | |||
1466 | fold_i = fold_start; do { | |||
1467 | x_cm |= collapse_masks[fold_i*C+0]; | |||
1468 | y_cm |= collapse_masks[fold_i*C+C-1]; | |||
1469 | } while (++fold_i<fold_end); | |||
1470 | } | |||
1471 | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | |||
1472 | always) be non-zero. */ | |||
1473 | else | |||
1474 | x_cm = y_cm = (1<<B)-1; | |||
1475 | ||||
1476 | if (dual_stereo && i==intensity) | |||
1477 | { | |||
1478 | int j; | |||
1479 | ||||
1480 | /* Switch off dual stereo to do intensity. */ | |||
1481 | dual_stereo = 0; | |||
1482 | if (resynth) | |||
1483 | for (j=0;j<M*eBands[i]-norm_offset;j++) | |||
1484 | norm[j] = HALF32(norm[j]+norm2[j])(.5f*(norm[j]+norm2[j])); | |||
1485 | } | |||
1486 | if (dual_stereo) | |||
1487 | { | |||
1488 | x_cm = quant_band(&ctx, X, N, b/2, B, | |||
1489 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
1490 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, x_cm); | |||
1491 | y_cm = quant_band(&ctx, Y, N, b/2, B, | |||
1492 | effective_lowband != -1 ? norm2+effective_lowband : NULL((void*)0), LM, | |||
1493 | last?NULL((void*)0):norm2+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, y_cm); | |||
1494 | } else { | |||
1495 | if (Y!=NULL((void*)0)) | |||
1496 | { | |||
1497 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | |||
1498 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
1499 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); | |||
1500 | } else { | |||
1501 | x_cm = quant_band(&ctx, X, N, b, B, | |||
1502 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
1503 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, x_cm|y_cm); | |||
1504 | } | |||
1505 | y_cm = x_cm; | |||
1506 | } | |||
1507 | collapse_masks[i*C+0] = (unsigned char)x_cm; | |||
1508 | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | |||
1509 | balance += pulses[i] + tell; | |||
1510 | ||||
1511 | /* Update the folding position only as long as we have 1 bit/sample depth. */ | |||
1512 | update_lowband = b>(N<<BITRES3); | |||
1513 | } | |||
1514 | *seed = ctx.seed; | |||
1515 | ||||
1516 | RESTORE_STACK; | |||
1517 | } | |||
1518 |