File: | libs/opus-1.1-p2/src/analysis.c |
Location: | line 514, column 8 |
Description: | Value stored to 'beta' is never read |
1 | /* Copyright (c) 2011 Xiph.Org Foundation |
2 | Written by Jean-Marc Valin */ |
3 | /* |
4 | Redistribution and use in source and binary forms, with or without |
5 | modification, are permitted provided that the following conditions |
6 | are met: |
7 | |
8 | - Redistributions of source code must retain the above copyright |
9 | notice, this list of conditions and the following disclaimer. |
10 | |
11 | - Redistributions in binary form must reproduce the above copyright |
12 | notice, this list of conditions and the following disclaimer in the |
13 | documentation and/or other materials provided with the distribution. |
14 | |
15 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
16 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
17 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
18 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
19 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
20 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
21 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
22 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
23 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
24 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | */ |
27 | |
28 | #ifdef HAVE_CONFIG_H1 |
29 | #include "config.h" |
30 | #endif |
31 | |
32 | #include "kiss_fft.h" |
33 | #include "celt.h" |
34 | #include "modes.h" |
35 | #include "arch.h" |
36 | #include "quant_bands.h" |
37 | #include <stdio.h> |
38 | #include "analysis.h" |
39 | #include "mlp.h" |
40 | #include "stack_alloc.h" |
41 | |
42 | extern const MLP net; |
43 | |
44 | #ifndef M_PI3.14159265358979323846 |
45 | #define M_PI3.14159265358979323846 3.141592653 |
46 | #endif |
47 | |
48 | static const float dct_table[128] = { |
49 | 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, |
50 | 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, |
51 | 0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f, |
52 | -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f, |
53 | 0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f, |
54 | -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f, |
55 | 0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f, |
56 | 0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f, |
57 | 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, |
58 | 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, |
59 | 0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f, |
60 | -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f, |
61 | 0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f, |
62 | -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f, |
63 | 0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f, |
64 | 0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f, |
65 | }; |
66 | |
67 | static const float analysis_window[240] = { |
68 | 0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f, |
69 | 0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f, |
70 | 0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f, |
71 | 0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f, |
72 | 0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f, |
73 | 0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f, |
74 | 0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f, |
75 | 0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f, |
76 | 0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f, |
77 | 0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f, |
78 | 0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f, |
79 | 0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f, |
80 | 0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f, |
81 | 0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f, |
82 | 0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f, |
83 | 0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f, |
84 | 0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f, |
85 | 0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f, |
86 | 0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f, |
87 | 0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f, |
88 | 0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f, |
89 | 0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f, |
90 | 0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f, |
91 | 0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f, |
92 | 0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f, |
93 | 0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f, |
94 | 0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f, |
95 | 0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f, |
96 | 0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f, |
97 | 0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f, |
98 | }; |
99 | |
100 | static const int tbands[NB_TBANDS18+1] = { |
101 | 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120 |
102 | }; |
103 | |
104 | static const int extra_bands[NB_TOT_BANDS21+1] = { |
105 | 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120, 160, 200 |
106 | }; |
107 | |
108 | /*static const float tweight[NB_TBANDS+1] = { |
109 | .3, .4, .5, .6, .7, .8, .9, 1., 1., 1., 1., 1., 1., 1., .8, .7, .6, .5 |
110 | };*/ |
111 | |
112 | #define NB_TONAL_SKIP_BANDS9 9 |
113 | |
114 | #define cA0.43157974f 0.43157974f |
115 | #define cB0.67848403f 0.67848403f |
116 | #define cC0.08595542f 0.08595542f |
117 | #define cE((float)3.14159265358979323846/2) ((float)M_PI3.14159265358979323846/2) |
118 | static OPUS_INLINEinline float fast_atan2f(float y, float x) { |
119 | float x2, y2; |
120 | /* Should avoid underflow on the values we'll get */ |
121 | if (ABS16(x)((x) < 0 ? (-(x)) : (x))+ABS16(y)((y) < 0 ? (-(y)) : (y))<1e-9f) |
122 | { |
123 | x*=1e12f; |
124 | y*=1e12f; |
125 | } |
126 | x2 = x*x; |
127 | y2 = y*y; |
128 | if(x2<y2){ |
129 | float den = (y2 + cB0.67848403f*x2) * (y2 + cC0.08595542f*x2); |
130 | if (den!=0) |
131 | return -x*y*(y2 + cA0.43157974f*x2) / den + (y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)); |
132 | else |
133 | return (y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)); |
134 | }else{ |
135 | float den = (x2 + cB0.67848403f*y2) * (x2 + cC0.08595542f*y2); |
136 | if (den!=0) |
137 | return x*y*(x2 + cA0.43157974f*y2) / den + (y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)) - (x*y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)); |
138 | else |
139 | return (y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)) - (x*y<0 ? -cE((float)3.14159265358979323846/2) : cE((float)3.14159265358979323846/2)); |
140 | } |
141 | } |
142 | |
143 | void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len) |
144 | { |
145 | int pos; |
146 | int curr_lookahead; |
147 | float psum; |
148 | int i; |
149 | |
150 | pos = tonal->read_pos; |
151 | curr_lookahead = tonal->write_pos-tonal->read_pos; |
152 | if (curr_lookahead<0) |
153 | curr_lookahead += DETECT_SIZE200; |
154 | |
155 | if (len > 480 && pos != tonal->write_pos) |
156 | { |
157 | pos++; |
158 | if (pos==DETECT_SIZE200) |
159 | pos=0; |
160 | } |
161 | if (pos == tonal->write_pos) |
162 | pos--; |
163 | if (pos<0) |
164 | pos = DETECT_SIZE200-1; |
165 | OPUS_COPY(info_out, &tonal->info[pos], 1)(memcpy((info_out), (&tonal->info[pos]), (1)*sizeof(*( info_out)) + 0*((info_out)-(&tonal->info[pos])) )); |
166 | tonal->read_subframe += len/120; |
167 | while (tonal->read_subframe>=4) |
168 | { |
169 | tonal->read_subframe -= 4; |
170 | tonal->read_pos++; |
171 | } |
172 | if (tonal->read_pos>=DETECT_SIZE200) |
173 | tonal->read_pos-=DETECT_SIZE200; |
174 | |
175 | /* Compensate for the delay in the features themselves. |
176 | FIXME: Need a better estimate the 10 I just made up */ |
177 | curr_lookahead = IMAX(curr_lookahead-10, 0)((curr_lookahead-10) > (0) ? (curr_lookahead-10) : (0)); |
178 | |
179 | psum=0; |
180 | /* Summing the probability of transition patterns that involve music at |
181 | time (DETECT_SIZE-curr_lookahead-1) */ |
182 | for (i=0;i<DETECT_SIZE200-curr_lookahead;i++) |
183 | psum += tonal->pmusic[i]; |
184 | for (;i<DETECT_SIZE200;i++) |
185 | psum += tonal->pspeech[i]; |
186 | psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence; |
187 | /*printf("%f %f %f\n", psum, info_out->music_prob, info_out->tonality);*/ |
188 | |
189 | info_out->music_prob = psum; |
190 | } |
191 | |
192 | void tonality_analysis(TonalityAnalysisState *tonal, AnalysisInfo *info_out, const CELTModeOpusCustomMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) |
193 | { |
194 | int i, b; |
195 | const kiss_fft_state *kfft; |
196 | VARDECL(kiss_fft_cpx, in); |
197 | VARDECL(kiss_fft_cpx, out); |
198 | int N = 480, N2=240; |
199 | float * OPUS_RESTRICT__restrict A = tonal->angle; |
200 | float * OPUS_RESTRICT__restrict dA = tonal->d_angle; |
201 | float * OPUS_RESTRICT__restrict d2A = tonal->d2_angle; |
202 | VARDECL(float, tonality); |
203 | VARDECL(float, noisiness); |
204 | float band_tonality[NB_TBANDS18]; |
205 | float logE[NB_TBANDS18]; |
206 | float BFCC[8]; |
207 | float features[25]; |
208 | float frame_tonality; |
209 | float max_frame_tonality; |
210 | /*float tw_sum=0;*/ |
211 | float frame_noisiness; |
212 | const float pi4 = (float)(M_PI3.14159265358979323846*M_PI3.14159265358979323846*M_PI3.14159265358979323846*M_PI3.14159265358979323846); |
213 | float slope=0; |
214 | float frame_stationarity; |
215 | float relativeE; |
216 | float frame_probs[2]; |
217 | float alpha, alphaE, alphaE2; |
218 | float frame_loudness; |
219 | float bandwidth_mask; |
220 | int bandwidth=0; |
221 | float maxE = 0; |
222 | float noise_floor; |
223 | int remaining; |
224 | AnalysisInfo *info; |
225 | SAVE_STACK; |
226 | |
227 | tonal->last_transition++; |
228 | alpha = 1.f/IMIN(20, 1+tonal->count)((20) < (1+tonal->count) ? (20) : (1+tonal->count)); |
229 | alphaE = 1.f/IMIN(50, 1+tonal->count)((50) < (1+tonal->count) ? (50) : (1+tonal->count)); |
230 | alphaE2 = 1.f/IMIN(1000, 1+tonal->count)((1000) < (1+tonal->count) ? (1000) : (1+tonal->count )); |
231 | |
232 | if (tonal->count<4) |
233 | tonal->music_prob = .5; |
234 | kfft = celt_mode->mdct.kfft[0]; |
235 | if (tonal->count==0) |
236 | tonal->mem_fill = 240; |
237 | downmix(x, &tonal->inmem[tonal->mem_fill], IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill)((len) < (720 -tonal->mem_fill) ? (len) : (720 -tonal-> mem_fill)), offset, c1, c2, C); |
238 | if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE720) |
239 | { |
240 | tonal->mem_fill += len; |
241 | /* Don't have enough to update the analysis */ |
242 | RESTORE_STACK; |
243 | return; |
244 | } |
245 | info = &tonal->info[tonal->write_pos++]; |
246 | if (tonal->write_pos>=DETECT_SIZE200) |
247 | tonal->write_pos-=DETECT_SIZE200; |
248 | |
249 | ALLOC(in, 480, kiss_fft_cpx)kiss_fft_cpx in[480]; |
250 | ALLOC(out, 480, kiss_fft_cpx)kiss_fft_cpx out[480]; |
251 | ALLOC(tonality, 240, float)float tonality[240]; |
252 | ALLOC(noisiness, 240, float)float noisiness[240]; |
253 | for (i=0;i<N2;i++) |
254 | { |
255 | float w = analysis_window[i]; |
256 | in[i].r = (kiss_fft_scalarfloat)(w*tonal->inmem[i]); |
257 | in[i].i = (kiss_fft_scalarfloat)(w*tonal->inmem[N2+i]); |
258 | in[N-i-1].r = (kiss_fft_scalarfloat)(w*tonal->inmem[N-i-1]); |
259 | in[N-i-1].i = (kiss_fft_scalarfloat)(w*tonal->inmem[N+N2-i-1]); |
260 | } |
261 | OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240)(memmove((tonal->inmem), (tonal->inmem+720 -240), (240) *sizeof(*(tonal->inmem)) + 0*((tonal->inmem)-(tonal-> inmem+720 -240)) )); |
262 | remaining = len - (ANALYSIS_BUF_SIZE720-tonal->mem_fill); |
263 | downmix(x, &tonal->inmem[240], remaining, offset+ANALYSIS_BUF_SIZE720-tonal->mem_fill, c1, c2, C); |
264 | tonal->mem_fill = 240 + remaining; |
265 | opus_fft(kfft, in, out); |
266 | |
267 | for (i=1;i<N2;i++) |
268 | { |
269 | float X1r, X2r, X1i, X2i; |
270 | float angle, d_angle, d2_angle; |
271 | float angle2, d_angle2, d2_angle2; |
272 | float mod1, mod2, avg_mod; |
273 | X1r = (float)out[i].r+out[N-i].r; |
274 | X1i = (float)out[i].i-out[N-i].i; |
275 | X2r = (float)out[i].i+out[N-i].i; |
276 | X2i = (float)out[N-i].r-out[i].r; |
277 | |
278 | angle = (float)(.5f/M_PI3.14159265358979323846)*fast_atan2f(X1i, X1r); |
279 | d_angle = angle - A[i]; |
280 | d2_angle = d_angle - dA[i]; |
281 | |
282 | angle2 = (float)(.5f/M_PI3.14159265358979323846)*fast_atan2f(X2i, X2r); |
283 | d_angle2 = angle2 - angle; |
284 | d2_angle2 = d_angle2 - d_angle; |
285 | |
286 | mod1 = d2_angle - (float)floor(.5+d2_angle); |
287 | noisiness[i] = ABS16(mod1)((mod1) < 0 ? (-(mod1)) : (mod1)); |
288 | mod1 *= mod1; |
289 | mod1 *= mod1; |
290 | |
291 | mod2 = d2_angle2 - (float)floor(.5+d2_angle2); |
292 | noisiness[i] += ABS16(mod2)((mod2) < 0 ? (-(mod2)) : (mod2)); |
293 | mod2 *= mod2; |
294 | mod2 *= mod2; |
295 | |
296 | avg_mod = .25f*(d2A[i]+2.f*mod1+mod2); |
297 | tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; |
298 | |
299 | A[i] = angle2; |
300 | dA[i] = d_angle2; |
301 | d2A[i] = mod2; |
302 | } |
303 | |
304 | frame_tonality = 0; |
305 | max_frame_tonality = 0; |
306 | /*tw_sum = 0;*/ |
307 | info->activity = 0; |
308 | frame_noisiness = 0; |
309 | frame_stationarity = 0; |
310 | if (!tonal->count) |
311 | { |
312 | for (b=0;b<NB_TBANDS18;b++) |
313 | { |
314 | tonal->lowE[b] = 1e10; |
315 | tonal->highE[b] = -1e10; |
316 | } |
317 | } |
318 | relativeE = 0; |
319 | frame_loudness = 0; |
320 | for (b=0;b<NB_TBANDS18;b++) |
321 | { |
322 | float E=0, tE=0, nE=0; |
323 | float L1, L2; |
324 | float stationarity; |
325 | for (i=tbands[b];i<tbands[b+1];i++) |
326 | { |
327 | float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r |
328 | + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; |
329 | #ifdef FIXED_POINT |
330 | /* FIXME: It's probably best to change the BFCC filter initial state instead */ |
331 | binE *= 5.55e-17f; |
332 | #endif |
333 | E += binE; |
334 | tE += binE*tonality[i]; |
335 | nE += binE*2.f*(.5f-noisiness[i]); |
336 | } |
337 | tonal->E[tonal->E_count][b] = E; |
338 | frame_noisiness += nE/(1e-15f+E); |
339 | |
340 | frame_loudness += (float)sqrt(E+1e-10f); |
341 | logE[b] = (float)log(E+1e-10f); |
342 | tonal->lowE[b] = MIN32(logE[b], tonal->lowE[b]+.01f)((logE[b]) < (tonal->lowE[b]+.01f) ? (logE[b]) : (tonal ->lowE[b]+.01f)); |
343 | tonal->highE[b] = MAX32(logE[b], tonal->highE[b]-.1f)((logE[b]) > (tonal->highE[b]-.1f) ? (logE[b]) : (tonal ->highE[b]-.1f)); |
344 | if (tonal->highE[b] < tonal->lowE[b]+1.f) |
345 | { |
346 | tonal->highE[b]+=.5f; |
347 | tonal->lowE[b]-=.5f; |
348 | } |
349 | relativeE += (logE[b]-tonal->lowE[b])/(1e-15f+tonal->highE[b]-tonal->lowE[b]); |
350 | |
351 | L1=L2=0; |
352 | for (i=0;i<NB_FRAMES8;i++) |
353 | { |
354 | L1 += (float)sqrt(tonal->E[i][b]); |
355 | L2 += tonal->E[i][b]; |
356 | } |
357 | |
358 | stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2))((0.99f) < (L1/(float)sqrt(1e-15+8*L2)) ? (0.99f) : (L1/(float )sqrt(1e-15+8*L2))); |
359 | stationarity *= stationarity; |
360 | stationarity *= stationarity; |
361 | frame_stationarity += stationarity; |
362 | /*band_tonality[b] = tE/(1e-15+E)*/; |
363 | band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b])((tE/(1e-15f+E)) > (stationarity*tonal->prev_band_tonality [b]) ? (tE/(1e-15f+E)) : (stationarity*tonal->prev_band_tonality [b])); |
364 | #if 0 |
365 | if (b>=NB_TONAL_SKIP_BANDS9) |
366 | { |
367 | frame_tonality += tweight[b]*band_tonality[b]; |
368 | tw_sum += tweight[b]; |
369 | } |
370 | #else |
371 | frame_tonality += band_tonality[b]; |
372 | if (b>=NB_TBANDS18-NB_TONAL_SKIP_BANDS9) |
373 | frame_tonality -= band_tonality[b-NB_TBANDS18+NB_TONAL_SKIP_BANDS9]; |
374 | #endif |
375 | max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality)((max_frame_tonality) > ((1.f+.03f*(b-18))*frame_tonality) ? (max_frame_tonality) : ((1.f+.03f*(b-18))*frame_tonality)); |
376 | slope += band_tonality[b]*(b-8); |
377 | /*printf("%f %f ", band_tonality[b], stationarity);*/ |
378 | tonal->prev_band_tonality[b] = band_tonality[b]; |
379 | } |
380 | |
381 | bandwidth_mask = 0; |
382 | bandwidth = 0; |
383 | maxE = 0; |
384 | noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)((0) > (lsb_depth-8) ? (0) : (lsb_depth-8)))); |
385 | #ifdef FIXED_POINT |
386 | noise_floor *= 1<<(15+SIG_SHIFT); |
387 | #endif |
388 | noise_floor *= noise_floor; |
389 | for (b=0;b<NB_TOT_BANDS21;b++) |
390 | { |
391 | float E=0; |
392 | int band_start, band_end; |
393 | /* Keep a margin of 300 Hz for aliasing */ |
394 | band_start = extra_bands[b]; |
395 | band_end = extra_bands[b+1]; |
396 | for (i=band_start;i<band_end;i++) |
397 | { |
398 | float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r |
399 | + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; |
400 | E += binE; |
401 | } |
402 | maxE = MAX32(maxE, E)((maxE) > (E) ? (maxE) : (E)); |
403 | tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E)(((1-alphaE2)*tonal->meanE[b]) > (E) ? ((1-alphaE2)*tonal ->meanE[b]) : (E)); |
404 | E = MAX32(E, tonal->meanE[b])((E) > (tonal->meanE[b]) ? (E) : (tonal->meanE[b])); |
405 | /* Use a simple follower with 13 dB/Bark slope for spreading function */ |
406 | bandwidth_mask = MAX32(.05f*bandwidth_mask, E)((.05f*bandwidth_mask) > (E) ? (.05f*bandwidth_mask) : (E) ); |
407 | /* Consider the band "active" only if all these conditions are met: |
408 | 1) less than 10 dB below the simple follower |
409 | 2) less than 90 dB below the peak band (maximal masking possible considering |
410 | both the ATH and the loudness-dependent slope of the spreading function) |
411 | 3) above the PCM quantization noise floor |
412 | */ |
413 | if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start)) |
414 | bandwidth = b; |
415 | } |
416 | if (tonal->count<=2) |
417 | bandwidth = 20; |
418 | frame_loudness = 20*(float)log10(frame_loudness); |
419 | tonal->Etracker = MAX32(tonal->Etracker-.03f, frame_loudness)((tonal->Etracker-.03f) > (frame_loudness) ? (tonal-> Etracker-.03f) : (frame_loudness)); |
420 | tonal->lowECount *= (1-alphaE); |
421 | if (frame_loudness < tonal->Etracker-30) |
422 | tonal->lowECount += alphaE; |
423 | |
424 | for (i=0;i<8;i++) |
425 | { |
426 | float sum=0; |
427 | for (b=0;b<16;b++) |
428 | sum += dct_table[i*16+b]*logE[b]; |
429 | BFCC[i] = sum; |
430 | } |
431 | |
432 | frame_stationarity /= NB_TBANDS18; |
433 | relativeE /= NB_TBANDS18; |
434 | if (tonal->count<10) |
435 | relativeE = .5; |
436 | frame_noisiness /= NB_TBANDS18; |
437 | #if 1 |
438 | info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; |
439 | #else |
440 | info->activity = .5*(1+frame_noisiness-frame_stationarity); |
441 | #endif |
442 | frame_tonality = (max_frame_tonality/(NB_TBANDS18-NB_TONAL_SKIP_BANDS9)); |
443 | frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f)((frame_tonality) > (tonal->prev_tonality*.8f) ? (frame_tonality ) : (tonal->prev_tonality*.8f)); |
444 | tonal->prev_tonality = frame_tonality; |
445 | |
446 | slope /= 8*8; |
447 | info->tonality_slope = slope; |
448 | |
449 | tonal->E_count = (tonal->E_count+1)%NB_FRAMES8; |
450 | tonal->count++; |
451 | info->tonality = frame_tonality; |
452 | |
453 | for (i=0;i<4;i++) |
454 | features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i]; |
455 | |
456 | for (i=0;i<4;i++) |
457 | tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i]; |
458 | |
459 | for (i=0;i<4;i++) |
460 | features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]); |
461 | for (i=0;i<3;i++) |
462 | features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8]; |
463 | |
464 | if (tonal->count > 5) |
465 | { |
466 | for (i=0;i<9;i++) |
467 | tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; |
468 | } |
469 | |
470 | for (i=0;i<8;i++) |
471 | { |
472 | tonal->mem[i+24] = tonal->mem[i+16]; |
473 | tonal->mem[i+16] = tonal->mem[i+8]; |
474 | tonal->mem[i+8] = tonal->mem[i]; |
475 | tonal->mem[i] = BFCC[i]; |
476 | } |
477 | for (i=0;i<9;i++) |
478 | features[11+i] = (float)sqrt(tonal->std[i]); |
479 | features[20] = info->tonality; |
480 | features[21] = info->activity; |
481 | features[22] = frame_stationarity; |
482 | features[23] = info->tonality_slope; |
483 | features[24] = tonal->lowECount; |
484 | |
485 | #ifndef DISABLE_FLOAT_API |
486 | mlp_process(&net, features, frame_probs); |
487 | frame_probs[0] = .5f*(frame_probs[0]+1); |
488 | /* Curve fitting between the MLP probability and the actual probability */ |
489 | frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10); |
490 | /* Probability of active audio (as opposed to silence) */ |
491 | frame_probs[1] = .5f*frame_probs[1]+.5f; |
492 | /* Consider that silence has a 50-50 probability. */ |
493 | frame_probs[0] = frame_probs[1]*frame_probs[0] + (1-frame_probs[1])*.5f; |
494 | |
495 | /*printf("%f %f ", frame_probs[0], frame_probs[1]);*/ |
496 | { |
497 | /* Probability of state transition */ |
498 | float tau; |
499 | /* Represents independence of the MLP probabilities, where |
500 | beta=1 means fully independent. */ |
501 | float beta; |
502 | /* Denormalized probability of speech (p0) and music (p1) after update */ |
503 | float p0, p1; |
504 | /* Probabilities for "all speech" and "all music" */ |
505 | float s0, m0; |
506 | /* Probability sum for renormalisation */ |
507 | float psum; |
508 | /* Instantaneous probability of speech and music, with beta pre-applied. */ |
509 | float speech0; |
510 | float music0; |
511 | |
512 | /* One transition every 3 minutes of active audio */ |
513 | tau = .00005f*frame_probs[1]; |
514 | beta = .05f; |
Value stored to 'beta' is never read | |
515 | if (1) { |
516 | /* Adapt beta based on how "unexpected" the new prob is */ |
517 | float p, q; |
518 | p = MAX16(.05f,MIN16(.95f,frame_probs[0]))((.05f) > (((.95f) < (frame_probs[0]) ? (.95f) : (frame_probs [0]))) ? (.05f) : (((.95f) < (frame_probs[0]) ? (.95f) : ( frame_probs[0])))); |
519 | q = MAX16(.05f,MIN16(.95f,tonal->music_prob))((.05f) > (((.95f) < (tonal->music_prob) ? (.95f) : ( tonal->music_prob))) ? (.05f) : (((.95f) < (tonal->music_prob ) ? (.95f) : (tonal->music_prob)))); |
520 | beta = .01f+.05f*ABS16(p-q)((p-q) < 0 ? (-(p-q)) : (p-q))/(p*(1-q)+q*(1-p)); |
521 | } |
522 | /* p0 and p1 are the probabilities of speech and music at this frame |
523 | using only information from previous frame and applying the |
524 | state transition model */ |
525 | p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau; |
526 | p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau; |
527 | /* We apply the current probability with exponent beta to work around |
528 | the fact that the probability estimates aren't independent. */ |
529 | p0 *= (float)pow(1-frame_probs[0], beta); |
530 | p1 *= (float)pow(frame_probs[0], beta); |
531 | /* Normalise the probabilities to get the Marokv probability of music. */ |
532 | tonal->music_prob = p1/(p0+p1); |
533 | info->music_prob = tonal->music_prob; |
534 | |
535 | /* This chunk of code deals with delayed decision. */ |
536 | psum=1e-20f; |
537 | /* Instantaneous probability of speech and music, with beta pre-applied. */ |
538 | speech0 = (float)pow(1-frame_probs[0], beta); |
539 | music0 = (float)pow(frame_probs[0], beta); |
540 | if (tonal->count==1) |
541 | { |
542 | tonal->pspeech[0]=.5; |
543 | tonal->pmusic [0]=.5; |
544 | } |
545 | /* Updated probability of having only speech (s0) or only music (m0), |
546 | before considering the new observation. */ |
547 | s0 = tonal->pspeech[0] + tonal->pspeech[1]; |
548 | m0 = tonal->pmusic [0] + tonal->pmusic [1]; |
549 | /* Updates s0 and m0 with instantaneous probability. */ |
550 | tonal->pspeech[0] = s0*(1-tau)*speech0; |
551 | tonal->pmusic [0] = m0*(1-tau)*music0; |
552 | /* Propagate the transition probabilities */ |
553 | for (i=1;i<DETECT_SIZE200-1;i++) |
554 | { |
555 | tonal->pspeech[i] = tonal->pspeech[i+1]*speech0; |
556 | tonal->pmusic [i] = tonal->pmusic [i+1]*music0; |
557 | } |
558 | /* Probability that the latest frame is speech, when all the previous ones were music. */ |
559 | tonal->pspeech[DETECT_SIZE200-1] = m0*tau*speech0; |
560 | /* Probability that the latest frame is music, when all the previous ones were speech. */ |
561 | tonal->pmusic [DETECT_SIZE200-1] = s0*tau*music0; |
562 | |
563 | /* Renormalise probabilities to 1 */ |
564 | for (i=0;i<DETECT_SIZE200;i++) |
565 | psum += tonal->pspeech[i] + tonal->pmusic[i]; |
566 | psum = 1.f/psum; |
567 | for (i=0;i<DETECT_SIZE200;i++) |
568 | { |
569 | tonal->pspeech[i] *= psum; |
570 | tonal->pmusic [i] *= psum; |
571 | } |
572 | psum = tonal->pmusic[0]; |
573 | for (i=1;i<DETECT_SIZE200;i++) |
574 | psum += tonal->pspeech[i]; |
575 | |
576 | /* Estimate our confidence in the speech/music decisions */ |
577 | if (frame_probs[1]>.75) |
578 | { |
579 | if (tonal->music_prob>.9) |
580 | { |
581 | float adapt; |
582 | adapt = 1.f/(++tonal->music_confidence_count); |
583 | tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500)((tonal->music_confidence_count) < (500) ? (tonal->music_confidence_count ) : (500)); |
584 | tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence)((-.2f) > (frame_probs[0]-tonal->music_confidence) ? (- .2f) : (frame_probs[0]-tonal->music_confidence)); |
585 | } |
586 | if (tonal->music_prob<.1) |
587 | { |
588 | float adapt; |
589 | adapt = 1.f/(++tonal->speech_confidence_count); |
590 | tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500)((tonal->speech_confidence_count) < (500) ? (tonal-> speech_confidence_count) : (500)); |
591 | tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence)((.2f) < (frame_probs[0]-tonal->speech_confidence) ? (.2f ) : (frame_probs[0]-tonal->speech_confidence)); |
592 | } |
593 | } else { |
594 | if (tonal->music_confidence_count==0) |
595 | tonal->music_confidence = .9f; |
596 | if (tonal->speech_confidence_count==0) |
597 | tonal->speech_confidence = .1f; |
598 | } |
599 | } |
600 | if (tonal->last_music != (tonal->music_prob>.5f)) |
601 | tonal->last_transition=0; |
602 | tonal->last_music = tonal->music_prob>.5f; |
603 | #else |
604 | info->music_prob = 0; |
605 | #endif |
606 | /*for (i=0;i<25;i++) |
607 | printf("%f ", features[i]); |
608 | printf("\n");*/ |
609 | |
610 | info->bandwidth = bandwidth; |
611 | /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ |
612 | info->noisiness = frame_noisiness; |
613 | info->valid = 1; |
614 | if (info_out!=NULL((void*)0)) |
615 | OPUS_COPY(info_out, info, 1)(memcpy((info_out), (info), (1)*sizeof(*(info_out)) + 0*((info_out )-(info)) )); |
616 | RESTORE_STACK; |
617 | } |
618 | |
619 | void run_analysis(TonalityAnalysisState *analysis, const CELTModeOpusCustomMode *celt_mode, const void *analysis_pcm, |
620 | int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs, |
621 | int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info) |
622 | { |
623 | int offset; |
624 | int pcm_len; |
625 | |
626 | if (analysis_pcm != NULL((void*)0)) |
627 | { |
628 | /* Avoid overflow/wrap-around of the analysis buffer */ |
629 | analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/100, analysis_frame_size)(((200 -5)*Fs/100) < (analysis_frame_size) ? ((200 -5)*Fs/ 100) : (analysis_frame_size)); |
630 | |
631 | pcm_len = analysis_frame_size - analysis->analysis_offset; |
632 | offset = analysis->analysis_offset; |
633 | do { |
634 | tonality_analysis(analysis, NULL((void*)0), celt_mode, analysis_pcm, IMIN(480, pcm_len)((480) < (pcm_len) ? (480) : (pcm_len)), offset, c1, c2, C, lsb_depth, downmix); |
635 | offset += 480; |
636 | pcm_len -= 480; |
637 | } while (pcm_len>0); |
638 | analysis->analysis_offset = analysis_frame_size; |
639 | |
640 | analysis->analysis_offset -= frame_size; |
641 | } |
642 | |
643 | analysis_info->valid = 0; |
644 | tonality_get_info(analysis, analysis_info, frame_size); |
645 | } |