File: | libs/spandsp/src/v22bis_rx.c |
Location: | line 645, column 9 |
Description: | Value stored to 'bitstream' is never read |
1 | /* |
2 | * SpanDSP - a series of DSP components for telephony |
3 | * |
4 | * v22bis_rx.c - ITU V.22bis modem receive part |
5 | * |
6 | * Written by Steve Underwood <steveu@coppice.org> |
7 | * |
8 | * Copyright (C) 2004 Steve Underwood |
9 | * |
10 | * All rights reserved. |
11 | * |
12 | * This program is free software; you can redistribute it and/or modify |
13 | * it under the terms of the GNU Lesser General Public License version 2.1, |
14 | * as published by the Free Software Foundation. |
15 | * |
16 | * This program is distributed in the hope that it will be useful, |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
19 | * GNU Lesser General Public License for more details. |
20 | * |
21 | * You should have received a copy of the GNU Lesser General Public |
22 | * License along with this program; if not, write to the Free Software |
23 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
24 | */ |
25 | |
26 | /*! \file */ |
27 | |
28 | /* THIS IS A WORK IN PROGRESS - It is basically functional, but it is not feature |
29 | complete, and doesn't reliably sync over the signal and noise level ranges it |
30 | should. There are some nasty inefficiencies too! |
31 | TODO: |
32 | Better noise performance |
33 | Retrain is incomplete |
34 | Rate change is not implemented |
35 | Remote loopback is not implemented */ |
36 | |
37 | #if defined(HAVE_CONFIG_H1) |
38 | #include "config.h" |
39 | #endif |
40 | |
41 | #include <inttypes.h> |
42 | #include <string.h> |
43 | #include <stdio.h> |
44 | #include <stdlib.h> |
45 | #if defined(HAVE_TGMATH_H1) |
46 | #include <tgmath.h> |
47 | #endif |
48 | #if defined(HAVE_MATH_H1) |
49 | #include <math.h> |
50 | #endif |
51 | #if defined(HAVE_STDBOOL_H1) |
52 | #include <stdbool.h> |
53 | #else |
54 | #include "spandsp/stdbool.h" |
55 | #endif |
56 | #include "floating_fudge.h" |
57 | |
58 | #include "spandsp/telephony.h" |
59 | #include "spandsp/logging.h" |
60 | #include "spandsp/fast_convert.h" |
61 | #include "spandsp/math_fixed.h" |
62 | #include "spandsp/saturated.h" |
63 | #include "spandsp/complex.h" |
64 | #include "spandsp/vector_float.h" |
65 | #include "spandsp/complex_vector_float.h" |
66 | #include "spandsp/vector_int.h" |
67 | #include "spandsp/complex_vector_int.h" |
68 | #include "spandsp/async.h" |
69 | #include "spandsp/power_meter.h" |
70 | #include "spandsp/arctan2.h" |
71 | #include "spandsp/dds.h" |
72 | #include "spandsp/complex_filters.h" |
73 | |
74 | #include "spandsp/v29rx.h" |
75 | #include "spandsp/v22bis.h" |
76 | |
77 | #include "spandsp/private/logging.h" |
78 | #include "spandsp/private/power_meter.h" |
79 | #include "spandsp/private/v22bis.h" |
80 | |
81 | #if defined(SPANDSP_USE_FIXED_POINT) |
82 | #define FP_SCALE(x)(x) FP_Q6_10(x)((int16_t) (1024.0*x + ((x >= 0.0) ? 0.5 : -0.5))) |
83 | #define FP_SHIFT_FACTOR 10 |
84 | #else |
85 | #define FP_SCALE(x)(x) (x) |
86 | #endif |
87 | |
88 | #include "v22bis_rx_1200_rrc.h" |
89 | #include "v22bis_rx_2400_rrc.h" |
90 | |
91 | #define ms_to_symbols(t)(((t)*600)/1000) (((t)*600)/1000) |
92 | |
93 | /*! The adaption rate coefficient for the equalizer */ |
94 | #define EQUALIZER_DELTA0.25f 0.25f |
95 | /*! The number of phase shifted coefficient set for the pulse shaping/bandpass filter */ |
96 | #define PULSESHAPER_COEFF_SETS12 12 |
97 | |
98 | /* |
99 | The basic method used by the V.22bis receiver is: |
100 | |
101 | Put each sample into the pulse-shaping and phase shift filter buffer |
102 | |
103 | At T/2 rate: |
104 | Filter and demodulate the contents of the input filter buffer, producing a sample |
105 | in the equalizer filter buffer. |
106 | |
107 | Tune the symbol timing based on the latest 3 samples in the equalizer buffer. This |
108 | updates the decision points for taking the T/2 samples. |
109 | |
110 | Equalize the contents of the equalizer buffer, producing a demodulated constellation |
111 | point. |
112 | |
113 | Find the nearest constellation point to the received position. This is our received |
114 | symbol. |
115 | |
116 | Tune the local carrier, based on the angular mismatch between the actual signal and |
117 | the decision. |
118 | |
119 | Tune the equalizer, based on the mismatch between the actual signal and the decision. |
120 | |
121 | Descramble and output the bits represented by the decision. |
122 | */ |
123 | |
124 | static const uint8_t space_map_v22bis[6][6] = |
125 | { |
126 | {11, 9, 9, 6, 6, 7}, |
127 | {10, 8, 8, 4, 4, 5}, |
128 | {10, 8, 8, 4, 4, 5}, |
129 | {13, 12, 12, 0, 0, 2}, |
130 | {13, 12, 12, 0, 0, 2}, |
131 | {15, 14, 14, 1, 1, 3} |
132 | }; |
133 | |
134 | static const uint8_t phase_steps[4] = |
135 | { |
136 | 1, 0, 2, 3 |
137 | }; |
138 | |
139 | SPAN_DECLARE(float)__attribute__((visibility("default"))) float v22bis_rx_carrier_frequency(v22bis_state_t *s) |
140 | { |
141 | return dds_frequencyf(s->rx.carrier_phase_rate); |
142 | } |
143 | /*- End of function --------------------------------------------------------*/ |
144 | |
145 | SPAN_DECLARE(float)__attribute__((visibility("default"))) float v22bis_rx_symbol_timing_correction(v22bis_state_t *s) |
146 | { |
147 | return (float) s->rx.total_baud_timing_correction/((float) PULSESHAPER_COEFF_SETS12*40.0f/(3.0f*2.0f)); |
148 | } |
149 | /*- End of function --------------------------------------------------------*/ |
150 | |
151 | SPAN_DECLARE(float)__attribute__((visibility("default"))) float v22bis_rx_signal_power(v22bis_state_t *s) |
152 | { |
153 | return power_meter_current_dbm0(&s->rx.rx_power) + 6.34f; |
154 | } |
155 | /*- End of function --------------------------------------------------------*/ |
156 | |
157 | SPAN_DECLARE(void)__attribute__((visibility("default"))) void v22bis_rx_signal_cutoff(v22bis_state_t *s, float cutoff) |
158 | { |
159 | s->rx.carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f)*0.232f); |
160 | s->rx.carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f)*0.232f); |
161 | } |
162 | /*- End of function --------------------------------------------------------*/ |
163 | |
164 | void v22bis_report_status_change(v22bis_state_t *s, int status) |
165 | { |
166 | if (s->status_handler) |
167 | s->status_handler(s->status_user_data, status); |
168 | else if (s->put_bit) |
169 | s->put_bit(s->put_bit_user_data, status); |
170 | } |
171 | /*- End of function --------------------------------------------------------*/ |
172 | |
173 | #if defined(SPANDSP_USE_FIXED_POINT) |
174 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int v22bis_rx_equalizer_state(v22bis_state_t *s, complexi16_t **coeffs) |
175 | #else |
176 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int v22bis_rx_equalizer_state(v22bis_state_t *s, complexf_t **coeffs) |
177 | #endif |
178 | { |
179 | *coeffs = s->rx.eq_coeff; |
180 | return V22BIS_EQUALIZER_LEN17; |
181 | } |
182 | /*- End of function --------------------------------------------------------*/ |
183 | |
184 | void v22bis_equalizer_coefficient_reset(v22bis_state_t *s) |
185 | { |
186 | /* Start with an equalizer based on everything being perfect */ |
187 | #if defined(SPANDSP_USE_FIXED_POINT) |
188 | static const complexi16_t x = {FP_Q6_10(3.0f)((int16_t) (1024.0*3.0f + ((3.0f >= 0.0) ? 0.5 : -0.5))), FP_Q6_10(0.0f)((int16_t) (1024.0*0.0f + ((0.0f >= 0.0) ? 0.5 : -0.5)))}; |
189 | |
190 | cvec_zeroi16(s->rx.eq_coeff, V22BIS_EQUALIZER_LEN17); |
191 | s->rx.eq_coeff[V22BIS_EQUALIZER_PRE_LEN8] = x; |
192 | s->rx.eq_delta = 32.0f*EQUALIZER_DELTA0.25f/V22BIS_EQUALIZER_LEN17; |
193 | #else |
194 | static const complexf_t x = {3.0f, 0.0f}; |
195 | |
196 | cvec_zerof(s->rx.eq_coeff, V22BIS_EQUALIZER_LEN17); |
197 | s->rx.eq_coeff[V22BIS_EQUALIZER_PRE_LEN8] = x; |
198 | s->rx.eq_delta = EQUALIZER_DELTA0.25f/V22BIS_EQUALIZER_LEN17; |
199 | #endif |
200 | } |
201 | /*- End of function --------------------------------------------------------*/ |
202 | |
203 | static void equalizer_reset(v22bis_state_t *s) |
204 | { |
205 | v22bis_equalizer_coefficient_reset(s); |
206 | #if defined(SPANDSP_USE_FIXED_POINT) |
207 | cvec_zeroi16(s->rx.eq_buf, V22BIS_EQUALIZER_LEN17); |
208 | #else |
209 | cvec_zerof(s->rx.eq_buf, V22BIS_EQUALIZER_LEN17); |
210 | #endif |
211 | s->rx.eq_put_step = 20 - 1; |
212 | s->rx.eq_step = 0; |
213 | } |
214 | /*- End of function --------------------------------------------------------*/ |
215 | |
216 | #if defined(SPANDSP_USE_FIXED_POINT) |
217 | static __inline__ complexi16_t equalizer_get(v22bis_state_t *s) |
218 | { |
219 | complexi32_t zz; |
220 | complexi16_t z; |
221 | |
222 | /* Get the next equalized value. */ |
223 | zz = cvec_circular_dot_prodi16(s->rx.eq_buf, s->rx.eq_coeff, V22BIS_EQUALIZER_LEN17, s->rx.eq_step); |
224 | z.re = zz.re >> FP_SHIFT_FACTOR; |
225 | z.im = zz.im >> FP_SHIFT_FACTOR; |
226 | return z; |
227 | } |
228 | #else |
229 | static __inline__ complexf_t equalizer_get(v22bis_state_t *s) |
230 | { |
231 | /* Get the next equalized value. */ |
232 | return cvec_circular_dot_prodf(s->rx.eq_buf, s->rx.eq_coeff, V22BIS_EQUALIZER_LEN17, s->rx.eq_step); |
233 | } |
234 | #endif |
235 | /*- End of function --------------------------------------------------------*/ |
236 | |
237 | #if defined(SPANDSP_USE_FIXED_POINT) |
238 | static void tune_equalizer(v22bis_state_t *s, const complexi16_t *z, const complexi16_t *target) |
239 | { |
240 | complexi16_t err; |
241 | |
242 | /* Find the x and y mismatch from the exact constellation position. */ |
243 | err = complex_subi16(target, z); |
244 | err.re = ((int32_t) err.re*s->rx.eq_delta) >> 5; |
245 | err.im = ((int32_t) err.im*s->rx.eq_delta) >> 5; |
246 | //cvec_circular_lmsi16(s->rx.eq_buf, s->rx.eq_coeff, V22BIS_EQUALIZER_LEN, s->rx.eq_step, &err); |
247 | } |
248 | #else |
249 | static void tune_equalizer(v22bis_state_t *s, const complexf_t *z, const complexf_t *target) |
250 | { |
251 | complexf_t err; |
252 | |
253 | /* Find the x and y mismatch from the exact constellation position. */ |
254 | err = complex_subf(target, z); |
255 | err.re *= s->rx.eq_delta; |
256 | err.im *= s->rx.eq_delta; |
257 | cvec_circular_lmsf(s->rx.eq_buf, s->rx.eq_coeff, V22BIS_EQUALIZER_LEN17, s->rx.eq_step, &err); |
258 | } |
259 | #endif |
260 | /*- End of function --------------------------------------------------------*/ |
261 | |
262 | #if defined(SPANDSP_USE_FIXED_POINT) |
263 | static __inline__ void track_carrier(v22bis_state_t *s, const complexi16_t *z, const complexi16_t *target) |
264 | #else |
265 | static __inline__ void track_carrier(v22bis_state_t *s, const complexf_t *z, const complexf_t *target) |
266 | #endif |
267 | { |
268 | #if defined(SPANDSP_USE_FIXED_POINT) |
269 | int32_t error; |
270 | #else |
271 | float error; |
272 | #endif |
273 | |
274 | /* For small errors the imaginary part of the difference between the actual and the target |
275 | positions is proportional to the phase error, for any particular target. However, the |
276 | different amplitudes of the various target positions scale things. */ |
277 | #if defined(SPANDSP_USE_FIXED_POINT) |
278 | error = ((int32_t) z->im*target->re - (int32_t) z->re*target->im) >> FP_SHIFT_FACTOR; |
279 | s->rx.carrier_phase_rate += (s->rx.carrier_track_i*error); |
280 | s->rx.carrier_phase += (s->rx.carrier_track_p*error); |
281 | //span_log(&s->logging, |
282 | // SPAN_LOG_FLOW, |
283 | // "CARR: Im = %15.5f f = %15.5f - %10d %10d\n", |
284 | // error/1024.0f, |
285 | // dds_frequency(s->rx.carrier_phase_rate), |
286 | // (s->rx.carrier_track_i*error), |
287 | // (s->rx.carrier_track_p*error)); |
288 | #else |
289 | error = z->im*target->re - z->re*target->im; |
290 | s->rx.carrier_phase_rate += (int32_t) (s->rx.carrier_track_i*error); |
291 | s->rx.carrier_phase += (int32_t) (s->rx.carrier_track_p*error); |
292 | //span_log(&s->logging, |
293 | // SPAN_LOG_FLOW, |
294 | // "CARR: Im = %15.5f f = %15.5f - %10d %10d\n", |
295 | // error, |
296 | // dds_frequencyf(s->rx.carrier_phase_rate), |
297 | // (int32_t) (s->rx.carrier_track_i*error), |
298 | // (int32_t) (s->rx.carrier_track_p*error)); |
299 | #endif |
300 | } |
301 | /*- End of function --------------------------------------------------------*/ |
302 | |
303 | static __inline__ int descramble(v22bis_state_t *s, int bit) |
304 | { |
305 | int out_bit; |
306 | |
307 | /* Descramble the bit */ |
308 | bit &= 1; |
309 | out_bit = (bit ^ (s->rx.scramble_reg >> 13) ^ (s->rx.scramble_reg >> 16)) & 1; |
310 | s->rx.scramble_reg = (s->rx.scramble_reg << 1) | bit; |
311 | |
312 | if (s->rx.scrambler_pattern_count >= 64) |
313 | { |
314 | out_bit ^= 1; |
315 | s->rx.scrambler_pattern_count = 0; |
316 | } |
317 | if (bit) |
318 | s->rx.scrambler_pattern_count++; |
319 | else |
320 | s->rx.scrambler_pattern_count = 0; |
321 | return out_bit; |
322 | } |
323 | /*- End of function --------------------------------------------------------*/ |
324 | |
325 | static __inline__ void put_bit(v22bis_state_t *s, int bit) |
326 | { |
327 | int out_bit; |
328 | |
329 | /* Descramble the bit */ |
330 | out_bit = descramble(s, bit); |
331 | s->put_bit(s->put_bit_user_data, out_bit); |
332 | } |
333 | /*- End of function --------------------------------------------------------*/ |
334 | |
335 | static void decode_baud(v22bis_state_t *s, int nearest) |
336 | { |
337 | int raw_bits; |
338 | |
339 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
340 | s->rx.constellation_state = nearest; |
341 | /* The first two bits are the quadrant */ |
342 | put_bit(s, raw_bits >> 1); |
343 | put_bit(s, raw_bits); |
344 | if (s->rx.sixteen_way_decisions) |
345 | { |
346 | /* The other two bits are the position within the quadrant */ |
347 | put_bit(s, nearest >> 1); |
348 | put_bit(s, nearest); |
349 | } |
350 | } |
351 | /*- End of function --------------------------------------------------------*/ |
352 | |
353 | static int decode_baudx(v22bis_state_t *s, int nearest) |
354 | { |
355 | int raw_bits; |
356 | int out_bits; |
357 | |
358 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
359 | s->rx.constellation_state = nearest; |
360 | /* The first two bits are the quadrant */ |
361 | out_bits = descramble(s, raw_bits >> 1); |
362 | out_bits = (out_bits << 1) | descramble(s, raw_bits); |
363 | if (s->rx.sixteen_way_decisions) |
364 | { |
365 | /* The other two bits are the position within the quadrant */ |
366 | out_bits = (out_bits << 1) | descramble(s, nearest >> 1); |
367 | out_bits = (out_bits << 1) | descramble(s, nearest); |
368 | } |
369 | return out_bits; |
370 | } |
371 | /*- End of function --------------------------------------------------------*/ |
372 | |
373 | static __inline__ void symbol_sync(v22bis_state_t *s) |
374 | { |
375 | #if defined(SPANDSP_USE_FIXED_POINT) |
376 | int32_t p; |
377 | int32_t q; |
378 | complexi16_t a; |
379 | complexi16_t b; |
380 | complexi16_t c; |
381 | static const complexi16_t x = {FP_Q1_15(0.894427f)((int16_t) (32768.0*0.894427f + ((0.894427f >= 0.0) ? 0.5 : -0.5))), FP_Q1_15(0.44721f)((int16_t) (32768.0*0.44721f + ((0.44721f >= 0.0) ? 0.5 : - 0.5)))}; |
382 | #else |
383 | float p; |
384 | float q; |
385 | complexf_t a; |
386 | complexf_t b; |
387 | complexf_t c; |
388 | static const complexf_t x = {0.894427f, 0.44721f}; |
389 | #endif |
390 | int aa[3]; |
391 | int i; |
392 | int j; |
393 | |
394 | /* This routine adapts the position of the half baud samples entering the equalizer. */ |
395 | |
396 | /* Perform a Gardner test for baud alignment on the three most recent samples. */ |
397 | for (i = 0, j = s->rx.eq_step; i < 3; i++) |
398 | { |
399 | if (--j < 0) |
400 | j = V22BIS_EQUALIZER_LEN17 - 1; |
401 | aa[i] = j; |
402 | } |
403 | if (s->rx.sixteen_way_decisions) |
404 | { |
405 | p = s->rx.eq_buf[aa[2]].re - s->rx.eq_buf[aa[0]].re; |
406 | p *= s->rx.eq_buf[aa[1]].re; |
407 | |
408 | q = s->rx.eq_buf[aa[2]].im - s->rx.eq_buf[aa[0]].im; |
409 | q *= s->rx.eq_buf[aa[1]].im; |
410 | } |
411 | else |
412 | { |
413 | /* Rotate the points to the 45 degree positions, to maximise the effectiveness of |
414 | the Gardner algorithm. This is particularly significant at the start of operation |
415 | to pull things in quickly. */ |
416 | #if defined(SPANDSP_USE_FIXED_POINT) |
417 | a = complex_mul_q1_15(&s->rx.eq_buf[aa[2]], &x); |
418 | b = complex_mul_q1_15(&s->rx.eq_buf[aa[1]], &x); |
419 | c = complex_mul_q1_15(&s->rx.eq_buf[aa[0]], &x); |
420 | #else |
421 | a = complex_mulf(&s->rx.eq_buf[aa[2]], &x); |
422 | b = complex_mulf(&s->rx.eq_buf[aa[1]], &x); |
423 | c = complex_mulf(&s->rx.eq_buf[aa[0]], &x); |
424 | #endif |
425 | p = (a.re - c.re)*b.re; |
426 | q = (a.im - c.im)*b.im; |
427 | } |
428 | |
429 | s->rx.gardner_integrate += (p + q > 0) ? s->rx.gardner_step : -s->rx.gardner_step; |
430 | |
431 | if (abs(s->rx.gardner_integrate) >= 16) |
432 | { |
433 | /* This integrate and dump approach avoids rapid changes of the equalizer put step. |
434 | Rapid changes, without hysteresis, are bad. They degrade the equalizer performance |
435 | when the true symbol boundary is close to a sample boundary. */ |
436 | s->rx.eq_put_step += (s->rx.gardner_integrate/16); |
437 | s->rx.total_baud_timing_correction += (s->rx.gardner_integrate/16); |
438 | //span_log(&s->logging, SPAN_LOG_FLOW, "Gardner kick %d [total %d]\n", s->rx.gardner_integrate, s->rx.total_baud_timing_correction); |
439 | if (s->rx.qam_report) |
440 | s->rx.qam_report(s->rx.qam_user_data, NULL((void*)0), NULL((void*)0), s->rx.gardner_integrate); |
441 | s->rx.gardner_integrate = 0; |
442 | } |
443 | } |
444 | /*- End of function --------------------------------------------------------*/ |
445 | |
446 | #if defined(SPANDSP_USE_FIXED_POINT) |
447 | static __inline__ void process_half_baud(v22bis_state_t *s, const complexi16_t *sample) |
448 | #else |
449 | static __inline__ void process_half_baud(v22bis_state_t *s, const complexf_t *sample) |
450 | #endif |
451 | { |
452 | #if defined(SPANDSP_USE_FIXED_POINT) |
453 | complexi16_t z; |
454 | complexi16_t zz; |
455 | const complexi16_t *target; |
456 | static const complexi16_t x = {FP_Q1_15(0.894427f)((int16_t) (32768.0*0.894427f + ((0.894427f >= 0.0) ? 0.5 : -0.5))), FP_Q1_15(0.44721f)((int16_t) (32768.0*0.44721f + ((0.44721f >= 0.0) ? 0.5 : - 0.5)))}; |
457 | #else |
458 | complexf_t z; |
459 | complexf_t zz; |
460 | const complexf_t *target; |
461 | static const complexf_t x = {0.894427f, 0.44721f}; |
462 | #endif |
463 | int re; |
464 | int im; |
465 | int nearest; |
466 | int bitstream; |
467 | int raw_bits; |
468 | |
469 | z.re = sample->re; |
470 | z.im = sample->im; |
471 | |
472 | /* Add a sample to the equalizer's circular buffer, but don't calculate anything |
473 | at this time. */ |
474 | s->rx.eq_buf[s->rx.eq_step] = z; |
475 | if (++s->rx.eq_step >= V22BIS_EQUALIZER_LEN17) |
476 | s->rx.eq_step = 0; |
477 | |
478 | /* On alternate insertions we have a whole baud and must process it. */ |
479 | if ((s->rx.baud_phase ^= 1)) |
480 | return; |
481 | |
482 | symbol_sync(s); |
483 | |
484 | z = equalizer_get(s); |
485 | |
486 | /* Find the constellation point */ |
487 | if (s->rx.sixteen_way_decisions) |
488 | { |
489 | #if defined(SPANDSP_USE_FIXED_POINT) |
490 | re = (z.re + FP_Q6_10(3.0f)((int16_t) (1024.0*3.0f + ((3.0f >= 0.0) ? 0.5 : -0.5)))) >> FP_SHIFT_FACTOR; |
491 | im = (z.im + FP_Q6_10(3.0f)((int16_t) (1024.0*3.0f + ((3.0f >= 0.0) ? 0.5 : -0.5)))) >> FP_SHIFT_FACTOR; |
492 | #else |
493 | re = (int) (z.re + 3.0f); |
494 | im = (int) (z.im + 3.0f); |
495 | #endif |
496 | if (re > 5) |
497 | re = 5; |
498 | else if (re < 0) |
499 | re = 0; |
500 | if (im > 5) |
501 | im = 5; |
502 | else if (im < 0) |
503 | im = 0; |
504 | nearest = space_map_v22bis[re][im]; |
505 | } |
506 | else |
507 | { |
508 | /* Rotate to 45 degrees, to make the slicing trivial. */ |
509 | #if defined(SPANDSP_USE_FIXED_POINT) |
510 | zz = complex_mul_q1_15(&z, &x); |
511 | #else |
512 | zz = complex_mulf(&z, &x); |
513 | #endif |
514 | nearest = 0x01; |
515 | if (zz.re < 0) |
516 | nearest |= 0x04; |
517 | if (zz.im < 0) |
518 | { |
519 | nearest ^= 0x04; |
520 | nearest |= 0x08; |
521 | } |
522 | } |
523 | raw_bits = 0; |
524 | |
525 | switch (s->rx.training) |
526 | { |
527 | case V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION: |
528 | /* Normal operation. */ |
529 | target = &v22bis_constellation[nearest]; |
530 | track_carrier(s, &z, target); |
531 | tune_equalizer(s, &z, target); |
532 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
533 | /* TODO: detect unscrambled ones indicating a loopback request */ |
534 | |
535 | /* Search for the S1 signal that might be requesting a retrain */ |
536 | if ((s->rx.last_raw_bits ^ raw_bits) == 0x3) |
537 | { |
538 | s->rx.pattern_repeats++; |
539 | } |
540 | else |
541 | { |
542 | if (s->rx.pattern_repeats >= 50 && (s->rx.last_raw_bits == 0x3 || s->rx.last_raw_bits == 0x0)) |
543 | { |
544 | /* We should get a full run of 00 11 (about 60 bauds) at either modem. */ |
545 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ S1 detected (%d long)\n", s->rx.pattern_repeats); |
546 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ Accepting a retrain request\n"); |
547 | s->rx.pattern_repeats = 0; |
548 | s->rx.training_count = 0; |
549 | s->rx.training = V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200; |
550 | s->tx.training_count = 0; |
551 | s->tx.training = V22BIS_TX_TRAINING_STAGE_U0011; |
552 | v22bis_equalizer_coefficient_reset(s); |
553 | v22bis_report_status_change(s, SIG_STATUS_MODEM_RETRAIN_OCCURRED); |
554 | } |
555 | s->rx.pattern_repeats = 0; |
556 | } |
557 | decode_baud(s, nearest); |
558 | break; |
559 | case V22BIS_RX_TRAINING_STAGE_SYMBOL_ACQUISITION: |
560 | /* Allow time for the Gardner algorithm to settle the symbol timing. */ |
561 | target = &z; |
562 | if (++s->rx.training_count >= 40) |
563 | { |
564 | /* QAM and Gardner only play nicely with heavy damping, so we need to change to |
565 | a slow rate of symbol timing adaption. However, it must not be so slow that it |
566 | cannot track the worst case timing error specified in V.22bis. This should be 0.01%, |
567 | but since we might be off in the opposite direction from the source, the total |
568 | error could be higher. */ |
569 | s->rx.gardner_step = 4; |
570 | s->rx.pattern_repeats = 0; |
571 | s->rx.training = (s->calling_party) ? V22BIS_RX_TRAINING_STAGE_UNSCRAMBLED_ONES : V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200; |
572 | /* Be pessimistic and see what the handshake brings */ |
573 | s->negotiated_bit_rate = 1200; |
574 | break; |
575 | } |
576 | /* Once we have pulled in the symbol timing in a coarse way, use finer |
577 | steps to fine tune the timing. */ |
578 | if (s->rx.training_count == 30) |
579 | s->rx.gardner_step = 32; |
580 | break; |
581 | case V22BIS_RX_TRAINING_STAGE_UNSCRAMBLED_ONES: |
582 | /* Calling modem only */ |
583 | /* The calling modem should initially receive unscrambled ones at 1200bps */ |
584 | target = &v22bis_constellation[nearest]; |
585 | track_carrier(s, &z, target); |
586 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
587 | s->rx.constellation_state = nearest; |
588 | if (raw_bits != s->rx.last_raw_bits) |
589 | s->rx.pattern_repeats = 0; |
590 | else |
591 | s->rx.pattern_repeats++; |
592 | if (++s->rx.training_count == ms_to_symbols(155 + 456)(((155 + 456)*600)/1000)) |
593 | { |
594 | /* After the first 155ms things should have been steady, so check if the last 456ms was |
595 | steady at 11 or 00. */ |
596 | if (raw_bits == s->rx.last_raw_bits |
597 | && |
598 | (raw_bits == 0x3 || raw_bits == 0x0) |
599 | && |
600 | s->rx.pattern_repeats >= ms_to_symbols(456)(((456)*600)/1000)) |
601 | { |
602 | /* It looks like the answering machine is sending us a clean unscrambled 11 or 00 */ |
603 | if (s->bit_rate == 2400) |
604 | { |
605 | /* Try to establish at 2400bps. */ |
606 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting U0011 (S1) (Caller)\n"); |
607 | s->tx.training = V22BIS_TX_TRAINING_STAGE_U0011; |
608 | s->tx.training_count = 0; |
609 | } |
610 | else |
611 | { |
612 | /* Only try to establish at 1200bps. */ |
613 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S11 (1200) (Caller)\n"); |
614 | s->tx.training = V22BIS_TX_TRAINING_STAGE_S11; |
615 | s->tx.training_count = 0; |
616 | } |
617 | } |
618 | s->rx.pattern_repeats = 0; |
619 | s->rx.training_count = 0; |
620 | s->rx.training = V22BIS_RX_TRAINING_STAGE_UNSCRAMBLED_ONES_SUSTAINING; |
621 | } |
622 | break; |
623 | case V22BIS_RX_TRAINING_STAGE_UNSCRAMBLED_ONES_SUSTAINING: |
624 | /* Calling modem only */ |
625 | /* Wait for the end of the unscrambled ones at 1200bps. */ |
626 | target = &v22bis_constellation[nearest]; |
627 | track_carrier(s, &z, target); |
628 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
629 | s->rx.constellation_state = nearest; |
630 | if (raw_bits != s->rx.last_raw_bits) |
631 | { |
632 | /* This looks like the end of the sustained initial unscrambled 11 or 00. */ |
633 | s->tx.training_count = 0; |
634 | s->tx.training = V22BIS_TX_TRAINING_STAGE_TIMED_S11; |
635 | s->rx.training_count = 0; |
636 | s->rx.training = V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200; |
637 | s->rx.pattern_repeats = 0; |
638 | } |
639 | break; |
640 | case V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200: |
641 | target = &v22bis_constellation[nearest]; |
642 | track_carrier(s, &z, target); |
643 | tune_equalizer(s, &z, target); |
644 | raw_bits = phase_steps[((nearest >> 2) - (s->rx.constellation_state >> 2)) & 3]; |
645 | bitstream = decode_baudx(s, nearest); |
Value stored to 'bitstream' is never read | |
646 | s->rx.training_count++; |
647 | //span_log(&s->logging, SPAN_LOG_FLOW, "S11 0x%02x 0x%02x 0x%X %d %d %d %d %d\n", raw_bits, nearest, bitstream, s->rx.scrambled_ones_to_date, 0, 0, 0, s->rx.training_count); |
648 | if (s->negotiated_bit_rate == 1200) |
649 | { |
650 | /* Search for the S1 signal */ |
651 | if ((s->rx.last_raw_bits ^ raw_bits) == 0x3) |
652 | { |
653 | s->rx.pattern_repeats++; |
654 | } |
655 | else |
656 | { |
657 | if (s->rx.pattern_repeats >= 15 && (s->rx.last_raw_bits == 0x3 || s->rx.last_raw_bits == 0x0)) |
658 | { |
659 | /* We should get a full run of 00 11 (about 60 bauds) at the calling modem, but only about 20 |
660 | at the answering modem, as the first 40 are TED settling time. */ |
661 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ S1 detected (%d long)\n", s->rx.pattern_repeats); |
662 | if (s->bit_rate == 2400) |
663 | { |
664 | if (!s->calling_party) |
665 | { |
666 | /* Accept establishment at 2400bps */ |
667 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting U0011 (S1) (Answerer)\n"); |
668 | s->tx.training = V22BIS_TX_TRAINING_STAGE_U0011; |
669 | s->tx.training_count = 0; |
670 | } |
671 | s->negotiated_bit_rate = 2400; |
672 | } |
673 | } |
674 | s->rx.pattern_repeats = 0; |
675 | } |
676 | if (s->rx.training_count >= ms_to_symbols(270)(((270)*600)/1000)) |
677 | { |
678 | /* If we haven't seen the S1 signal by now, we are committed to be in 1200bps mode. */ |
679 | if (s->calling_party) |
680 | { |
681 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ Rx normal operation (1200)\n"); |
682 | /* The transmit side needs to sustain the scrambled ones for a timed period. */ |
683 | s->tx.training_count = 0; |
684 | s->tx.training = V22BIS_TX_TRAINING_STAGE_TIMED_S11; |
685 | /* Normal reception starts immediately */ |
686 | s->rx.training = V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION; |
687 | #if defined(SPANDSP_USE_FIXED_POINT) |
688 | s->rx.carrier_track_i = 8; |
689 | #else |
690 | s->rx.carrier_track_i = 8000.0f; |
691 | #endif |
692 | } |
693 | else |
694 | { |
695 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S11 (1200) (Answerer)\n"); |
696 | /* The transmit side needs to sustain the scrambled ones for a timed period. */ |
697 | s->tx.training_count = 0; |
698 | s->tx.training = V22BIS_TX_TRAINING_STAGE_TIMED_S11; |
699 | /* The receive side needs to wait a timed period, receiving scrambled ones, |
700 | before entering normal operation. */ |
701 | s->rx.training = V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200_SUSTAINING; |
702 | } |
703 | } |
704 | } |
705 | else |
706 | { |
707 | if (s->calling_party) |
708 | { |
709 | if (s->rx.training_count >= ms_to_symbols(100 + 450)(((100 + 450)*600)/1000)) |
710 | { |
711 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting 16 way decisions (caller)\n"); |
712 | s->rx.sixteen_way_decisions = true1; |
713 | s->rx.training = V22BIS_RX_TRAINING_STAGE_WAIT_FOR_SCRAMBLED_ONES_AT_2400; |
714 | s->rx.pattern_repeats = 0; |
715 | #if defined(SPANDSP_USE_FIXED_POINT) |
716 | s->rx.carrier_track_i = 8; |
717 | #else |
718 | s->rx.carrier_track_i = 8000.0f; |
719 | #endif |
720 | } |
721 | } |
722 | else |
723 | { |
724 | if (s->rx.training_count >= ms_to_symbols(450)(((450)*600)/1000)) |
725 | { |
726 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting 16 way decisions (answerer)\n"); |
727 | s->rx.sixteen_way_decisions = true1; |
728 | s->rx.training = V22BIS_RX_TRAINING_STAGE_WAIT_FOR_SCRAMBLED_ONES_AT_2400; |
729 | s->rx.pattern_repeats = 0; |
730 | } |
731 | } |
732 | } |
733 | break; |
734 | case V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200_SUSTAINING: |
735 | target = &v22bis_constellation[nearest]; |
736 | track_carrier(s, &z, target); |
737 | tune_equalizer(s, &z, target); |
738 | bitstream = decode_baudx(s, nearest); |
739 | if (++s->rx.training_count > ms_to_symbols(270 + 765)(((270 + 765)*600)/1000)) |
740 | { |
741 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ Rx normal operation (1200)\n"); |
742 | s->rx.training = V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION; |
743 | } |
744 | break; |
745 | case V22BIS_RX_TRAINING_STAGE_WAIT_FOR_SCRAMBLED_ONES_AT_2400: |
746 | target = &v22bis_constellation[nearest]; |
747 | track_carrier(s, &z, target); |
748 | tune_equalizer(s, &z, target); |
749 | bitstream = decode_baudx(s, nearest); |
750 | /* We need 32 sustained 1's to switch into normal operation. */ |
751 | if (bitstream == 0xF) |
752 | { |
753 | if (++s->rx.pattern_repeats >= 9) |
754 | { |
755 | span_log(&s->logging, SPAN_LOG_FLOW, "+++ Rx normal operation (2400)\n"); |
756 | s->rx.training = V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION; |
757 | } |
758 | } |
759 | else |
760 | { |
761 | s->rx.pattern_repeats = 0; |
762 | } |
763 | break; |
764 | case V22BIS_RX_TRAINING_STAGE_PARKED: |
765 | default: |
766 | /* We failed to train! */ |
767 | /* Park here until the carrier drops. */ |
768 | target = &z; |
769 | break; |
770 | } |
771 | s->rx.last_raw_bits = raw_bits; |
772 | if (s->rx.qam_report) |
773 | s->rx.qam_report(s->rx.qam_user_data, &z, target, s->rx.constellation_state); |
774 | } |
775 | /*- End of function --------------------------------------------------------*/ |
776 | |
777 | SPAN_DECLARE_NONSTD(int)__attribute__((visibility("default"))) int v22bis_rx(v22bis_state_t *s, const int16_t amp[], int len) |
778 | { |
779 | int i; |
780 | int step; |
781 | #if defined(SPANDSP_USE_FIXED_POINT) |
782 | complexi16_t z; |
783 | complexi16_t zz; |
784 | complexi16_t sample; |
785 | int32_t ii; |
786 | int32_t qq; |
787 | #else |
788 | complexf_t z; |
789 | complexf_t zz; |
790 | complexf_t sample; |
791 | float ii; |
792 | float qq; |
793 | #endif |
794 | int32_t root_power; |
795 | int32_t power; |
796 | |
797 | for (i = 0; i < len; i++) |
798 | { |
799 | /* Complex bandpass filter the signal, using a pair of FIRs, and RRC coeffs shifted |
800 | to centre at 1200Hz or 2400Hz. The filters support 12 fractional phase shifts, to |
801 | permit signal extraction very close to the middle of a symbol. */ |
802 | s->rx.rrc_filter[s->rx.rrc_filter_step] = amp[i]; |
803 | if (++s->rx.rrc_filter_step >= V22BIS_RX_FILTER_STEPS27) |
804 | s->rx.rrc_filter_step = 0; |
805 | |
806 | /* Calculate the I filter, with an arbitrary phase step, just so we can calculate |
807 | the signal power of the required carrier, with any guard tone or spillback of our |
808 | own transmitted signal suppressed. */ |
809 | if (s->calling_party) |
810 | { |
811 | #if defined(SPANDSP_USE_FIXED_POINT) |
812 | ii = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_2400_re[6], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
813 | #else |
814 | ii = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_2400_re[6], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
815 | #endif |
816 | } |
817 | else |
818 | { |
819 | #if defined(SPANDSP_USE_FIXED_POINT) |
820 | ii = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_1200_re[6], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
821 | #else |
822 | ii = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_1200_re[6], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
823 | #endif |
824 | } |
825 | power = power_meter_update(&s->rx.rx_power, (int16_t) ii); |
826 | if (s->rx.signal_present) |
827 | { |
828 | /* Look for power below the carrier off point */ |
829 | if (power < s->rx.carrier_off_power) |
830 | { |
831 | v22bis_restart(s, s->bit_rate); |
832 | v22bis_report_status_change(s, SIG_STATUS_CARRIER_DOWN); |
833 | continue; |
834 | } |
835 | } |
836 | else |
837 | { |
838 | /* Look for power exceeding the carrier on point */ |
839 | if (power < s->rx.carrier_on_power) |
840 | continue; |
841 | s->rx.signal_present = true1; |
842 | v22bis_report_status_change(s, SIG_STATUS_CARRIER_UP); |
843 | } |
844 | /* Only spend effort processing this data if the modem is not parked, after |
845 | a training failure. */ |
846 | if (s->rx.training == V22BIS_RX_TRAINING_STAGE_PARKED) |
847 | continue; |
848 | |
849 | /* Put things into the equalization buffer at T/2 rate. The Gardner algorithm |
850 | will fiddle the step to align this with the symbols. */ |
851 | if ((s->rx.eq_put_step -= PULSESHAPER_COEFF_SETS12) <= 0) |
852 | { |
853 | if (s->rx.training == V22BIS_RX_TRAINING_STAGE_SYMBOL_ACQUISITION) |
854 | { |
855 | /* Only AGC during the initial symbol acquisition, and then lock the gain. */ |
856 | if ((root_power = fixed_sqrt32(power)) == 0) |
857 | root_power = 1; |
858 | #if defined(SPANDSP_USE_FIXED_POINT) |
859 | s->rx.agc_scaling = saturate16(((int32_t) (FP_SCALE(0.18f)(0.18f)*FP_SCALE(3.60f)(3.60f)))/root_power); |
860 | #else |
861 | s->rx.agc_scaling = FP_SCALE(0.18f)(0.18f)*FP_SCALE(3.60f)(3.60f)/root_power; |
862 | #endif |
863 | } |
864 | /* Pulse shape while still at the carrier frequency, using a quadrature |
865 | pair of filters. This results in a properly bandpass filtered complex |
866 | signal, which can be brought directly to bandband by complex mixing. |
867 | No further filtering, to remove mixer harmonics, is needed. */ |
868 | step = -s->rx.eq_put_step; |
869 | if (step > PULSESHAPER_COEFF_SETS12 - 1) |
870 | step = PULSESHAPER_COEFF_SETS12 - 1; |
871 | if (s->calling_party) |
872 | { |
873 | #if defined(SPANDSP_USE_FIXED_POINT) |
874 | ii = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_2400_re[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
875 | qq = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_2400_im[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
876 | #else |
877 | ii = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_2400_re[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
878 | qq = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_2400_im[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
879 | #endif |
880 | } |
881 | else |
882 | { |
883 | #if defined(SPANDSP_USE_FIXED_POINT) |
884 | ii = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_1200_re[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
885 | qq = vec_circular_dot_prodi16(s->rx.rrc_filter, rx_pulseshaper_1200_im[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step) >> 15; |
886 | #else |
887 | ii = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_1200_re[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
888 | qq = vec_circular_dot_prodf(s->rx.rrc_filter, rx_pulseshaper_1200_im[step], V22BIS_RX_FILTER_STEPS27, s->rx.rrc_filter_step); |
889 | #endif |
890 | } |
891 | /* Shift to baseband - since this is done in a full complex form, the |
892 | result is clean, and requires no further filtering apart from the |
893 | equalizer. */ |
894 | #if defined(SPANDSP_USE_FIXED_POINT) |
895 | sample.re = (ii*s->rx.agc_scaling) >> FP_SHIFT_FACTOR; |
896 | sample.im = (qq*s->rx.agc_scaling) >> FP_SHIFT_FACTOR; |
897 | z = dds_lookup_complexi16(s->rx.carrier_phase); |
898 | zz.re = ((int32_t) sample.re*z.re - (int32_t) sample.im*z.im) >> 15; |
899 | zz.im = ((int32_t) -sample.re*z.im - (int32_t) sample.im*z.re) >> 15; |
900 | #else |
901 | sample.re = ii*s->rx.agc_scaling; |
902 | sample.im = qq*s->rx.agc_scaling; |
903 | z = dds_lookup_complexf(s->rx.carrier_phase); |
904 | zz.re = sample.re*z.re - sample.im*z.im; |
905 | zz.im = -sample.re*z.im - sample.im*z.re; |
906 | #endif |
907 | s->rx.eq_put_step += PULSESHAPER_COEFF_SETS12*40/(3*2); |
908 | process_half_baud(s, &zz); |
909 | } |
910 | #if defined(SPANDSP_USE_FIXED_POINT) |
911 | dds_advance(&s->rx.carrier_phase, s->rx.carrier_phase_rate); |
912 | #else |
913 | dds_advancef(&s->rx.carrier_phase, s->rx.carrier_phase_rate); |
914 | #endif |
915 | } |
916 | return 0; |
917 | } |
918 | /*- End of function --------------------------------------------------------*/ |
919 | |
920 | SPAN_DECLARE_NONSTD(int)__attribute__((visibility("default"))) int v22bis_rx_fillin(v22bis_state_t *s, int len) |
921 | { |
922 | int i; |
923 | |
924 | /* We want to sustain the current state (i.e carrier on<->carrier off), and |
925 | try to sustain the carrier phase. We should probably push the filters, as well */ |
926 | span_log(&s->logging, SPAN_LOG_FLOW, "Fill-in %d samples\n", len); |
927 | if (!s->rx.signal_present) |
928 | return 0; |
929 | for (i = 0; i < len; i++) |
930 | { |
931 | #if defined(SPANDSP_USE_FIXED_POINT) |
932 | dds_advance(&s->rx.carrier_phase, s->rx.carrier_phase_rate); |
933 | #else |
934 | dds_advancef(&s->rx.carrier_phase, s->rx.carrier_phase_rate); |
935 | #endif |
936 | } |
937 | /* TODO: Advance the symbol phase the appropriate amount */ |
938 | return 0; |
939 | } |
940 | /*- End of function --------------------------------------------------------*/ |
941 | |
942 | int v22bis_rx_restart(v22bis_state_t *s) |
943 | { |
944 | #if defined(SPANDSP_USE_FIXED_POINT) |
945 | vec_zeroi16(s->rx.rrc_filter, sizeof(s->rx.rrc_filter)/sizeof(s->rx.rrc_filter[0])); |
946 | s->rx.training_error = 0; |
947 | #else |
948 | vec_zerof(s->rx.rrc_filter, sizeof(s->rx.rrc_filter)/sizeof(s->rx.rrc_filter[0])); |
949 | s->rx.training_error = 0.0f; |
950 | #endif |
951 | s->rx.rrc_filter_step = 0; |
952 | s->rx.scramble_reg = 0; |
953 | s->rx.scrambler_pattern_count = 0; |
954 | s->rx.training = V22BIS_RX_TRAINING_STAGE_SYMBOL_ACQUISITION; |
955 | s->rx.training_count = 0; |
956 | s->rx.signal_present = false0; |
957 | |
958 | s->rx.carrier_phase_rate = (s->calling_party) ? DDS_PHASE_RATE(2400.0f)(int32_t) ((2400.0f)*65536.0f*65536.0f/8000) : DDS_PHASE_RATE(1200.0f)(int32_t) ((1200.0f)*65536.0f*65536.0f/8000); |
959 | s->rx.carrier_phase = 0; |
960 | power_meter_init(&s->rx.rx_power, 5); |
961 | v22bis_rx_signal_cutoff(s, -45.5f); |
962 | #if defined(SPANDSP_USE_FIXED_POINT) |
963 | s->rx.agc_scaling = (float) (1024.0f*1024.0f)*0.0005f*0.025f; |
964 | #else |
965 | s->rx.agc_scaling = 0.0005f*0.025f; |
966 | #endif |
967 | |
968 | s->rx.constellation_state = 0; |
969 | s->rx.sixteen_way_decisions = false0; |
970 | |
971 | equalizer_reset(s); |
972 | |
973 | s->rx.pattern_repeats = 0; |
974 | s->rx.last_raw_bits = 0; |
975 | s->rx.gardner_integrate = 0; |
976 | s->rx.gardner_step = 256; |
977 | s->rx.baud_phase = 0; |
978 | s->rx.total_baud_timing_correction = 0; |
979 | /* We want the carrier to pull in faster on the answerer side, as it has very little time to adapt. */ |
980 | #if defined(SPANDSP_USE_FIXED_POINT) |
981 | s->rx.carrier_track_i = (s->calling_party) ? 8 : 40; |
982 | s->rx.carrier_track_p = 8000; |
983 | #else |
984 | s->rx.carrier_track_i = (s->calling_party) ? 8000.0f : 40000.0f; |
985 | s->rx.carrier_track_p = 8000000.0f; |
986 | #endif |
987 | |
988 | s->negotiated_bit_rate = 1200; |
989 | |
990 | return 0; |
991 | } |
992 | /*- End of function --------------------------------------------------------*/ |
993 | |
994 | SPAN_DECLARE(void)__attribute__((visibility("default"))) void v22bis_rx_set_qam_report_handler(v22bis_state_t *s, qam_report_handler_t handler, void *user_data) |
995 | { |
996 | s->rx.qam_report = handler; |
997 | s->rx.qam_user_data = user_data; |
998 | } |
999 | /*- End of function --------------------------------------------------------*/ |
1000 | /*- End of file ------------------------------------------------------------*/ |