| File: | libs/apr/random/unix/sha2.c |
| Location: | line 770, column 9 |
| Description: | Value stored to 'a' is never read |
| 1 | /* Licensed to the Apache Software Foundation (ASF) under one or more |
| 2 | * contributor license agreements. See the NOTICE file distributed with |
| 3 | * this work for additional information regarding copyright ownership. |
| 4 | * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 5 | * (the "License"); you may not use this file except in compliance with |
| 6 | * the License. You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | /* |
| 17 | * FILE: sha2.c |
| 18 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
| 19 | * |
| 20 | * A licence was granted to the ASF by Aaron on 4 November 2003. |
| 21 | */ |
| 22 | |
| 23 | #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ |
| 24 | #include <assert.h> /* assert() */ |
| 25 | #include "sha2.h" |
| 26 | |
| 27 | /* |
| 28 | * ASSERT NOTE: |
| 29 | * Some sanity checking code is included using assert(). On my FreeBSD |
| 30 | * system, this additional code can be removed by compiling with NDEBUG |
| 31 | * defined. Check your own systems manpage on assert() to see how to |
| 32 | * compile WITHOUT the sanity checking code on your system. |
| 33 | * |
| 34 | * UNROLLED TRANSFORM LOOP NOTE: |
| 35 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
| 36 | * loop version for the hash transform rounds (defined using macros |
| 37 | * later in this file). Either define on the command line, for example: |
| 38 | * |
| 39 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
| 40 | * |
| 41 | * or define below: |
| 42 | * |
| 43 | * #define SHA2_UNROLL_TRANSFORM |
| 44 | * |
| 45 | */ |
| 46 | |
| 47 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
| 48 | typedef apr_byte_t sha2_byte; /* Exactly 1 byte */ |
| 49 | typedef apr_uint32_t sha2_word32; /* Exactly 4 bytes */ |
| 50 | typedef apr_uint64_t sha2_word64; /* Exactly 8 bytes */ |
| 51 | |
| 52 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
| 53 | /* NOTE: Most of these are in sha2.h */ |
| 54 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) |
| 55 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) |
| 56 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) |
| 57 | |
| 58 | |
| 59 | /*** ENDIAN REVERSAL MACROS *******************************************/ |
| 60 | #if !APR_IS_BIGENDIAN0 |
| 61 | #define REVERSE32(w,x){ sha2_word32 tmp = (w); tmp = (tmp >> 16) | (tmp << 16); (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); } { \ |
| 62 | sha2_word32 tmp = (w); \ |
| 63 | tmp = (tmp >> 16) | (tmp << 16); \ |
| 64 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
| 65 | } |
| 66 | #define REVERSE64(w,x){ sha2_word64 tmp = (w); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ( (tmp & 0x00ff00ff00ff00ffUL) << 8); (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL ) << 16); } { \ |
| 67 | sha2_word64 tmp = (w); \ |
| 68 | tmp = (tmp >> 32) | (tmp << 32); \ |
| 69 | tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)0xff00ff00ff00ff00UL) >> 8) | \ |
| 70 | ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)0x00ff00ff00ff00ffUL) << 8); \ |
| 71 | (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)0xffff0000ffff0000UL) >> 16) | \ |
| 72 | ((tmp & APR_UINT64_C(0x0000ffff0000ffff)0x0000ffff0000ffffUL) << 16); \ |
| 73 | } |
| 74 | #endif /* !APR_IS_BIGENDIAN */ |
| 75 | |
| 76 | /* |
| 77 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
| 78 | * unsigned 128-bit integer (represented using a two-element array of |
| 79 | * 64-bit words): |
| 80 | */ |
| 81 | #define ADDINC128(w,n){ (w)[0] += (sha2_word64)(n); if ((w)[0] < (n)) { (w)[1]++ ; } } { \ |
| 82 | (w)[0] += (sha2_word64)(n); \ |
| 83 | if ((w)[0] < (n)) { \ |
| 84 | (w)[1]++; \ |
| 85 | } \ |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * Macros for copying blocks of memory and for zeroing out ranges |
| 90 | * of memory. Using these macros makes it easy to switch from |
| 91 | * using memset()/memcpy() and using bzero()/bcopy(). |
| 92 | * |
| 93 | * Please define either SHA2_USE_MEMSET_MEMCPY or define |
| 94 | * SHA2_USE_BZERO_BCOPY depending on which function set you |
| 95 | * choose to use: |
| 96 | */ |
| 97 | #if !defined(SHA2_USE_MEMSET_MEMCPY1) && !defined(SHA2_USE_BZERO_BCOPY) |
| 98 | /* Default to memset()/memcpy() if no option is specified */ |
| 99 | #define SHA2_USE_MEMSET_MEMCPY1 1 |
| 100 | #endif |
| 101 | #if defined(SHA2_USE_MEMSET_MEMCPY1) && defined(SHA2_USE_BZERO_BCOPY) |
| 102 | /* Abort with an error if BOTH options are defined */ |
| 103 | #error Define either SHA2_USE_MEMSET_MEMCPY1 or SHA2_USE_BZERO_BCOPY, not both! |
| 104 | #endif |
| 105 | |
| 106 | #ifdef SHA2_USE_MEMSET_MEMCPY1 |
| 107 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) memset((p), 0, (l)) |
| 108 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) memcpy((d), (s), (l)) |
| 109 | #endif |
| 110 | #ifdef SHA2_USE_BZERO_BCOPY |
| 111 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) bzero((p), (l)) |
| 112 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) bcopy((s), (d), (l)) |
| 113 | #endif |
| 114 | |
| 115 | |
| 116 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| 117 | /* |
| 118 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| 119 | * |
| 120 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| 121 | * S is a ROTATION) because the SHA-256/384/512 description document |
| 122 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| 123 | * same "backwards" definition. |
| 124 | */ |
| 125 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| 126 | #define R(b,x)((x) >> (b)) ((x) >> (b)) |
| 127 | /* 32-bit Rotate-right (used in SHA-256): */ |
| 128 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) |
| 129 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| 130 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) |
| 131 | |
| 132 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| 133 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) |
| 134 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 135 | |
| 136 | /* Four of six logical functions used in SHA-256: */ |
| 137 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) |
| 138 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) |
| 139 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) |
| 140 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) |
| 141 | |
| 142 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| 143 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) |
| 144 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) |
| 145 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) |
| 146 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) |
| 147 | |
| 148 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
| 149 | /* NOTE: These should not be accessed directly from outside this |
| 150 | * library -- they are intended for private internal visibility/use |
| 151 | * only. |
| 152 | */ |
| 153 | void apr__SHA512_Last(SHA512_CTX*); |
| 154 | void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*); |
| 155 | void apr__SHA512_Transform(SHA512_CTX*, const sha2_word64*); |
| 156 | |
| 157 | |
| 158 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| 159 | /* Hash constant words K for SHA-256: */ |
| 160 | const static sha2_word32 K256[64] = { |
| 161 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
| 162 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
| 163 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
| 164 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
| 165 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 166 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
| 167 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
| 168 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
| 169 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
| 170 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 171 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
| 172 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
| 173 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
| 174 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
| 175 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 176 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| 177 | }; |
| 178 | |
| 179 | /* Initial hash value H for SHA-256: */ |
| 180 | const static sha2_word32 sha256_initial_hash_value[8] = { |
| 181 | 0x6a09e667UL, |
| 182 | 0xbb67ae85UL, |
| 183 | 0x3c6ef372UL, |
| 184 | 0xa54ff53aUL, |
| 185 | 0x510e527fUL, |
| 186 | 0x9b05688cUL, |
| 187 | 0x1f83d9abUL, |
| 188 | 0x5be0cd19UL |
| 189 | }; |
| 190 | |
| 191 | /* Hash constant words K for SHA-384 and SHA-512: */ |
| 192 | const static sha2_word64 K512[80] = { |
| 193 | APR_UINT64_C(0x428a2f98d728ae22)0x428a2f98d728ae22UL, APR_UINT64_C(0x7137449123ef65cd)0x7137449123ef65cdUL, |
| 194 | APR_UINT64_C(0xb5c0fbcfec4d3b2f)0xb5c0fbcfec4d3b2fUL, APR_UINT64_C(0xe9b5dba58189dbbc)0xe9b5dba58189dbbcUL, |
| 195 | APR_UINT64_C(0x3956c25bf348b538)0x3956c25bf348b538UL, APR_UINT64_C(0x59f111f1b605d019)0x59f111f1b605d019UL, |
| 196 | APR_UINT64_C(0x923f82a4af194f9b)0x923f82a4af194f9bUL, APR_UINT64_C(0xab1c5ed5da6d8118)0xab1c5ed5da6d8118UL, |
| 197 | APR_UINT64_C(0xd807aa98a3030242)0xd807aa98a3030242UL, APR_UINT64_C(0x12835b0145706fbe)0x12835b0145706fbeUL, |
| 198 | APR_UINT64_C(0x243185be4ee4b28c)0x243185be4ee4b28cUL, APR_UINT64_C(0x550c7dc3d5ffb4e2)0x550c7dc3d5ffb4e2UL, |
| 199 | APR_UINT64_C(0x72be5d74f27b896f)0x72be5d74f27b896fUL, APR_UINT64_C(0x80deb1fe3b1696b1)0x80deb1fe3b1696b1UL, |
| 200 | APR_UINT64_C(0x9bdc06a725c71235)0x9bdc06a725c71235UL, APR_UINT64_C(0xc19bf174cf692694)0xc19bf174cf692694UL, |
| 201 | APR_UINT64_C(0xe49b69c19ef14ad2)0xe49b69c19ef14ad2UL, APR_UINT64_C(0xefbe4786384f25e3)0xefbe4786384f25e3UL, |
| 202 | APR_UINT64_C(0x0fc19dc68b8cd5b5)0x0fc19dc68b8cd5b5UL, APR_UINT64_C(0x240ca1cc77ac9c65)0x240ca1cc77ac9c65UL, |
| 203 | APR_UINT64_C(0x2de92c6f592b0275)0x2de92c6f592b0275UL, APR_UINT64_C(0x4a7484aa6ea6e483)0x4a7484aa6ea6e483UL, |
| 204 | APR_UINT64_C(0x5cb0a9dcbd41fbd4)0x5cb0a9dcbd41fbd4UL, APR_UINT64_C(0x76f988da831153b5)0x76f988da831153b5UL, |
| 205 | APR_UINT64_C(0x983e5152ee66dfab)0x983e5152ee66dfabUL, APR_UINT64_C(0xa831c66d2db43210)0xa831c66d2db43210UL, |
| 206 | APR_UINT64_C(0xb00327c898fb213f)0xb00327c898fb213fUL, APR_UINT64_C(0xbf597fc7beef0ee4)0xbf597fc7beef0ee4UL, |
| 207 | APR_UINT64_C(0xc6e00bf33da88fc2)0xc6e00bf33da88fc2UL, APR_UINT64_C(0xd5a79147930aa725)0xd5a79147930aa725UL, |
| 208 | APR_UINT64_C(0x06ca6351e003826f)0x06ca6351e003826fUL, APR_UINT64_C(0x142929670a0e6e70)0x142929670a0e6e70UL, |
| 209 | APR_UINT64_C(0x27b70a8546d22ffc)0x27b70a8546d22ffcUL, APR_UINT64_C(0x2e1b21385c26c926)0x2e1b21385c26c926UL, |
| 210 | APR_UINT64_C(0x4d2c6dfc5ac42aed)0x4d2c6dfc5ac42aedUL, APR_UINT64_C(0x53380d139d95b3df)0x53380d139d95b3dfUL, |
| 211 | APR_UINT64_C(0x650a73548baf63de)0x650a73548baf63deUL, APR_UINT64_C(0x766a0abb3c77b2a8)0x766a0abb3c77b2a8UL, |
| 212 | APR_UINT64_C(0x81c2c92e47edaee6)0x81c2c92e47edaee6UL, APR_UINT64_C(0x92722c851482353b)0x92722c851482353bUL, |
| 213 | APR_UINT64_C(0xa2bfe8a14cf10364)0xa2bfe8a14cf10364UL, APR_UINT64_C(0xa81a664bbc423001)0xa81a664bbc423001UL, |
| 214 | APR_UINT64_C(0xc24b8b70d0f89791)0xc24b8b70d0f89791UL, APR_UINT64_C(0xc76c51a30654be30)0xc76c51a30654be30UL, |
| 215 | APR_UINT64_C(0xd192e819d6ef5218)0xd192e819d6ef5218UL, APR_UINT64_C(0xd69906245565a910)0xd69906245565a910UL, |
| 216 | APR_UINT64_C(0xf40e35855771202a)0xf40e35855771202aUL, APR_UINT64_C(0x106aa07032bbd1b8)0x106aa07032bbd1b8UL, |
| 217 | APR_UINT64_C(0x19a4c116b8d2d0c8)0x19a4c116b8d2d0c8UL, APR_UINT64_C(0x1e376c085141ab53)0x1e376c085141ab53UL, |
| 218 | APR_UINT64_C(0x2748774cdf8eeb99)0x2748774cdf8eeb99UL, APR_UINT64_C(0x34b0bcb5e19b48a8)0x34b0bcb5e19b48a8UL, |
| 219 | APR_UINT64_C(0x391c0cb3c5c95a63)0x391c0cb3c5c95a63UL, APR_UINT64_C(0x4ed8aa4ae3418acb)0x4ed8aa4ae3418acbUL, |
| 220 | APR_UINT64_C(0x5b9cca4f7763e373)0x5b9cca4f7763e373UL, APR_UINT64_C(0x682e6ff3d6b2b8a3)0x682e6ff3d6b2b8a3UL, |
| 221 | APR_UINT64_C(0x748f82ee5defb2fc)0x748f82ee5defb2fcUL, APR_UINT64_C(0x78a5636f43172f60)0x78a5636f43172f60UL, |
| 222 | APR_UINT64_C(0x84c87814a1f0ab72)0x84c87814a1f0ab72UL, APR_UINT64_C(0x8cc702081a6439ec)0x8cc702081a6439ecUL, |
| 223 | APR_UINT64_C(0x90befffa23631e28)0x90befffa23631e28UL, APR_UINT64_C(0xa4506cebde82bde9)0xa4506cebde82bde9UL, |
| 224 | APR_UINT64_C(0xbef9a3f7b2c67915)0xbef9a3f7b2c67915UL, APR_UINT64_C(0xc67178f2e372532b)0xc67178f2e372532bUL, |
| 225 | APR_UINT64_C(0xca273eceea26619c)0xca273eceea26619cUL, APR_UINT64_C(0xd186b8c721c0c207)0xd186b8c721c0c207UL, |
| 226 | APR_UINT64_C(0xeada7dd6cde0eb1e)0xeada7dd6cde0eb1eUL, APR_UINT64_C(0xf57d4f7fee6ed178)0xf57d4f7fee6ed178UL, |
| 227 | APR_UINT64_C(0x06f067aa72176fba)0x06f067aa72176fbaUL, APR_UINT64_C(0x0a637dc5a2c898a6)0x0a637dc5a2c898a6UL, |
| 228 | APR_UINT64_C(0x113f9804bef90dae)0x113f9804bef90daeUL, APR_UINT64_C(0x1b710b35131c471b)0x1b710b35131c471bUL, |
| 229 | APR_UINT64_C(0x28db77f523047d84)0x28db77f523047d84UL, APR_UINT64_C(0x32caab7b40c72493)0x32caab7b40c72493UL, |
| 230 | APR_UINT64_C(0x3c9ebe0a15c9bebc)0x3c9ebe0a15c9bebcUL, APR_UINT64_C(0x431d67c49c100d4c)0x431d67c49c100d4cUL, |
| 231 | APR_UINT64_C(0x4cc5d4becb3e42b6)0x4cc5d4becb3e42b6UL, APR_UINT64_C(0x597f299cfc657e2a)0x597f299cfc657e2aUL, |
| 232 | APR_UINT64_C(0x5fcb6fab3ad6faec)0x5fcb6fab3ad6faecUL, APR_UINT64_C(0x6c44198c4a475817)0x6c44198c4a475817UL |
| 233 | }; |
| 234 | |
| 235 | /* Initial hash value H for SHA-384 */ |
| 236 | const static sha2_word64 sha384_initial_hash_value[8] = { |
| 237 | APR_UINT64_C(0xcbbb9d5dc1059ed8)0xcbbb9d5dc1059ed8UL, |
| 238 | APR_UINT64_C(0x629a292a367cd507)0x629a292a367cd507UL, |
| 239 | APR_UINT64_C(0x9159015a3070dd17)0x9159015a3070dd17UL, |
| 240 | APR_UINT64_C(0x152fecd8f70e5939)0x152fecd8f70e5939UL, |
| 241 | APR_UINT64_C(0x67332667ffc00b31)0x67332667ffc00b31UL, |
| 242 | APR_UINT64_C(0x8eb44a8768581511)0x8eb44a8768581511UL, |
| 243 | APR_UINT64_C(0xdb0c2e0d64f98fa7)0xdb0c2e0d64f98fa7UL, |
| 244 | APR_UINT64_C(0x47b5481dbefa4fa4)0x47b5481dbefa4fa4UL |
| 245 | }; |
| 246 | |
| 247 | /* Initial hash value H for SHA-512 */ |
| 248 | const static sha2_word64 sha512_initial_hash_value[8] = { |
| 249 | APR_UINT64_C(0x6a09e667f3bcc908)0x6a09e667f3bcc908UL, |
| 250 | APR_UINT64_C(0xbb67ae8584caa73b)0xbb67ae8584caa73bUL, |
| 251 | APR_UINT64_C(0x3c6ef372fe94f82b)0x3c6ef372fe94f82bUL, |
| 252 | APR_UINT64_C(0xa54ff53a5f1d36f1)0xa54ff53a5f1d36f1UL, |
| 253 | APR_UINT64_C(0x510e527fade682d1)0x510e527fade682d1UL, |
| 254 | APR_UINT64_C(0x9b05688c2b3e6c1f)0x9b05688c2b3e6c1fUL, |
| 255 | APR_UINT64_C(0x1f83d9abfb41bd6b)0x1f83d9abfb41bd6bUL, |
| 256 | APR_UINT64_C(0x5be0cd19137e2179)0x5be0cd19137e2179UL |
| 257 | }; |
| 258 | |
| 259 | /* |
| 260 | * Constant used by SHA256/384/512_End() functions for converting the |
| 261 | * digest to a readable hexadecimal character string: |
| 262 | */ |
| 263 | static const char *sha2_hex_digits = "0123456789abcdef"; |
| 264 | |
| 265 | |
| 266 | /*** SHA-256: *********************************************************/ |
| 267 | void apr__SHA256_Init(SHA256_CTX* context) { |
| 268 | if (context == (SHA256_CTX*)0) { |
| 269 | return; |
| 270 | } |
| 271 | MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH)memcpy((context->state), (sha256_initial_hash_value), (32) ); |
| 272 | MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH)memset((context->buffer), 0, (64)); |
| 273 | context->bitcount = 0; |
| 274 | } |
| 275 | |
| 276 | #ifdef SHA2_UNROLL_TRANSFORM |
| 277 | |
| 278 | /* Unrolled SHA-256 round macros: */ |
| 279 | |
| 280 | #if !APR_IS_BIGENDIAN0 |
| 281 | |
| 282 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 283 | REVERSE32(*data++, W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; \ |
| 284 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
| 285 | K256[j] + W256[j]; \ |
| 286 | (d) += T1; \ |
| 287 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
| 288 | j++ |
| 289 | |
| 290 | |
| 291 | #else /* APR_IS_BIGENDIAN */ |
| 292 | |
| 293 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 294 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
| 295 | K256[j] + (W256[j] = *data++); \ |
| 296 | (d) += T1; \ |
| 297 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
| 298 | j++ |
| 299 | |
| 300 | #endif /* APR_IS_BIGENDIAN */ |
| 301 | |
| 302 | #define ROUND256(a,b,c,d,e,f,g,h) \ |
| 303 | s0 = W256[(j+1)&0x0f]; \ |
| 304 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ |
| 305 | s1 = W256[(j+14)&0x0f]; \ |
| 306 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ |
| 307 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ |
| 308 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
| 309 | (d) += T1; \ |
| 310 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
| 311 | j++ |
| 312 | |
| 313 | void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
| 314 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
| 315 | sha2_word32 T1, *W256; |
| 316 | int j; |
| 317 | |
| 318 | W256 = (sha2_word32*)context->buffer; |
| 319 | |
| 320 | /* Initialize registers with the prev. intermediate value */ |
| 321 | a = context->state[0]; |
| 322 | b = context->state[1]; |
| 323 | c = context->state[2]; |
| 324 | d = context->state[3]; |
| 325 | e = context->state[4]; |
| 326 | f = context->state[5]; |
| 327 | g = context->state[6]; |
| 328 | h = context->state[7]; |
| 329 | |
| 330 | j = 0; |
| 331 | do { |
| 332 | /* Rounds 0 to 15 (unrolled): */ |
| 333 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
| 334 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
| 335 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
| 336 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
| 337 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
| 338 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
| 339 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
| 340 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
| 341 | } while (j < 16); |
| 342 | |
| 343 | /* Now for the remaining rounds to 64: */ |
| 344 | do { |
| 345 | ROUND256(a,b,c,d,e,f,g,h); |
| 346 | ROUND256(h,a,b,c,d,e,f,g); |
| 347 | ROUND256(g,h,a,b,c,d,e,f); |
| 348 | ROUND256(f,g,h,a,b,c,d,e); |
| 349 | ROUND256(e,f,g,h,a,b,c,d); |
| 350 | ROUND256(d,e,f,g,h,a,b,c); |
| 351 | ROUND256(c,d,e,f,g,h,a,b); |
| 352 | ROUND256(b,c,d,e,f,g,h,a); |
| 353 | } while (j < 64); |
| 354 | |
| 355 | /* Compute the current intermediate hash value */ |
| 356 | context->state[0] += a; |
| 357 | context->state[1] += b; |
| 358 | context->state[2] += c; |
| 359 | context->state[3] += d; |
| 360 | context->state[4] += e; |
| 361 | context->state[5] += f; |
| 362 | context->state[6] += g; |
| 363 | context->state[7] += h; |
| 364 | |
| 365 | /* Clean up */ |
| 366 | a = b = c = d = e = f = g = h = T1 = 0; |
| 367 | } |
| 368 | |
| 369 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 370 | |
| 371 | void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
| 372 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
| 373 | sha2_word32 T1, T2, *W256; |
| 374 | int j; |
| 375 | |
| 376 | W256 = (sha2_word32*)context->buffer; |
| 377 | |
| 378 | /* Initialize registers with the prev. intermediate value */ |
| 379 | a = context->state[0]; |
| 380 | b = context->state[1]; |
| 381 | c = context->state[2]; |
| 382 | d = context->state[3]; |
| 383 | e = context->state[4]; |
| 384 | f = context->state[5]; |
| 385 | g = context->state[6]; |
| 386 | h = context->state[7]; |
| 387 | |
| 388 | j = 0; |
| 389 | do { |
| 390 | #if !APR_IS_BIGENDIAN0 |
| 391 | /* Copy data while converting to host byte order */ |
| 392 | REVERSE32(*data++,W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
| 393 | /* Apply the SHA-256 compression function to update a..h */ |
| 394 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; |
| 395 | #else /* APR_IS_BIGENDIAN */ |
| 396 | /* Apply the SHA-256 compression function to update a..h with copy */ |
| 397 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + (W256[j] = *data++); |
| 398 | #endif /* APR_IS_BIGENDIAN */ |
| 399 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
| 400 | h = g; |
| 401 | g = f; |
| 402 | f = e; |
| 403 | e = d + T1; |
| 404 | d = c; |
| 405 | c = b; |
| 406 | b = a; |
| 407 | a = T1 + T2; |
| 408 | |
| 409 | j++; |
| 410 | } while (j < 16); |
| 411 | |
| 412 | do { |
| 413 | /* Part of the message block expansion: */ |
| 414 | s0 = W256[(j+1)&0x0f]; |
| 415 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); |
| 416 | s1 = W256[(j+14)&0x0f]; |
| 417 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); |
| 418 | |
| 419 | /* Apply the SHA-256 compression function to update a..h */ |
| 420 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + |
| 421 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
| 422 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
| 423 | h = g; |
| 424 | g = f; |
| 425 | f = e; |
| 426 | e = d + T1; |
| 427 | d = c; |
| 428 | c = b; |
| 429 | b = a; |
| 430 | a = T1 + T2; |
| 431 | |
| 432 | j++; |
| 433 | } while (j < 64); |
| 434 | |
| 435 | /* Compute the current intermediate hash value */ |
| 436 | context->state[0] += a; |
| 437 | context->state[1] += b; |
| 438 | context->state[2] += c; |
| 439 | context->state[3] += d; |
| 440 | context->state[4] += e; |
| 441 | context->state[5] += f; |
| 442 | context->state[6] += g; |
| 443 | context->state[7] += h; |
| 444 | |
| 445 | /* Clean up */ |
| 446 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 447 | } |
| 448 | |
| 449 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 450 | |
| 451 | void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { |
| 452 | unsigned int freespace, usedspace; |
| 453 | |
| 454 | if (len == 0) { |
| 455 | /* Calling with no data is valid - we do nothing */ |
| 456 | return; |
| 457 | } |
| 458 | |
| 459 | /* Sanity check: */ |
| 460 | assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0)((context != (SHA256_CTX*)0 && data != (sha2_byte*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0 && data != (sha2_byte*)0" , "random/unix/sha2.c", 460, __PRETTY_FUNCTION__)); |
| 461 | |
| 462 | usedspace = (unsigned int)((context->bitcount >> 3) |
| 463 | % SHA256_BLOCK_LENGTH64); |
| 464 | if (usedspace > 0) { |
| 465 | /* Calculate how much free space is available in the buffer */ |
| 466 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; |
| 467 | |
| 468 | if (len >= freespace) { |
| 469 | /* Fill the buffer completely and process it */ |
| 470 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace)memcpy((&context->buffer[usedspace]), (data), (freespace )); |
| 471 | context->bitcount += freespace << 3; |
| 472 | len -= freespace; |
| 473 | data += freespace; |
| 474 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
| 475 | } else { |
| 476 | /* The buffer is not yet full */ |
| 477 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len)memcpy((&context->buffer[usedspace]), (data), (len)); |
| 478 | context->bitcount += len << 3; |
| 479 | /* Clean up: */ |
| 480 | usedspace = freespace = 0; |
| 481 | return; |
| 482 | } |
| 483 | } |
| 484 | while (len >= SHA256_BLOCK_LENGTH64) { |
| 485 | /* Process as many complete blocks as we can */ |
| 486 | apr__SHA256_Transform(context, (sha2_word32*)data); |
| 487 | context->bitcount += SHA256_BLOCK_LENGTH64 << 3; |
| 488 | len -= SHA256_BLOCK_LENGTH64; |
| 489 | data += SHA256_BLOCK_LENGTH64; |
| 490 | } |
| 491 | if (len > 0) { |
| 492 | /* There's left-overs, so save 'em */ |
| 493 | MEMCPY_BCOPY(context->buffer, data, len)memcpy((context->buffer), (data), (len)); |
| 494 | context->bitcount += len << 3; |
| 495 | } |
| 496 | /* Clean up: */ |
| 497 | usedspace = freespace = 0; |
| 498 | } |
| 499 | |
| 500 | void apr__SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { |
| 501 | sha2_word32 *d = (sha2_word32*)digest; |
| 502 | unsigned int usedspace; |
| 503 | |
| 504 | /* Sanity check: */ |
| 505 | assert(context != (SHA256_CTX*)0)((context != (SHA256_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0" , "random/unix/sha2.c", 505, __PRETTY_FUNCTION__)); |
| 506 | |
| 507 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 508 | if (digest != (sha2_byte*)0) { |
| 509 | usedspace = (unsigned int)((context->bitcount >> 3) |
| 510 | % SHA256_BLOCK_LENGTH64); |
| 511 | #if !APR_IS_BIGENDIAN0 |
| 512 | /* Convert FROM host byte order */ |
| 513 | REVERSE64(context->bitcount,context->bitcount){ sha2_word64 tmp = (context->bitcount); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
| 514 | #endif |
| 515 | if (usedspace > 0) { |
| 516 | /* Begin padding with a 1 bit: */ |
| 517 | context->buffer[usedspace++] = 0x80; |
| 518 | |
| 519 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { |
| 520 | /* Set-up for the last transform: */ |
| 521 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, ((64 - 8) - usedspace )); |
| 522 | } else { |
| 523 | if (usedspace < SHA256_BLOCK_LENGTH64) { |
| 524 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, (64 - usedspace )); |
| 525 | } |
| 526 | /* Do second-to-last transform: */ |
| 527 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
| 528 | |
| 529 | /* And set-up for the last transform: */ |
| 530 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((64 - 8))); |
| 531 | } |
| 532 | } else { |
| 533 | /* Set-up for the last transform: */ |
| 534 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((64 - 8))); |
| 535 | |
| 536 | /* Begin padding with a 1 bit: */ |
| 537 | *context->buffer = 0x80; |
| 538 | } |
| 539 | /* Set the bit count: */ |
| 540 | *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH(64 - 8)] = context->bitcount; |
| 541 | |
| 542 | /* Final transform: */ |
| 543 | apr__SHA256_Transform(context, (sha2_word32*)context->buffer); |
| 544 | |
| 545 | #if !APR_IS_BIGENDIAN0 |
| 546 | { |
| 547 | /* Convert TO host byte order */ |
| 548 | int j; |
| 549 | for (j = 0; j < 8; j++) { |
| 550 | REVERSE32(context->state[j],context->state[j]){ sha2_word32 tmp = (context->state[j]); tmp = (tmp >> 16) | (tmp << 16); (context->state[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
| 551 | *d++ = context->state[j]; |
| 552 | } |
| 553 | } |
| 554 | #else |
| 555 | MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH)memcpy((d), (context->state), (32)); |
| 556 | #endif |
| 557 | } |
| 558 | |
| 559 | /* Clean up state data: */ |
| 560 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 561 | usedspace = 0; |
| 562 | } |
| 563 | |
| 564 | char *apr__SHA256_End(SHA256_CTX* context, char buffer[]) { |
| 565 | sha2_byte digest[SHA256_DIGEST_LENGTH32], *d = digest; |
| 566 | int i; |
| 567 | |
| 568 | /* Sanity check: */ |
| 569 | assert(context != (SHA256_CTX*)0)((context != (SHA256_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA256_CTX*)0" , "random/unix/sha2.c", 569, __PRETTY_FUNCTION__)); |
| 570 | |
| 571 | if (buffer != (char*)0) { |
| 572 | apr__SHA256_Final(digest, context); |
| 573 | |
| 574 | for (i = 0; i < SHA256_DIGEST_LENGTH32; i++) { |
| 575 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| 576 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| 577 | d++; |
| 578 | } |
| 579 | *buffer = (char)0; |
| 580 | } else { |
| 581 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 582 | } |
| 583 | MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH)memset((digest), 0, (32)); |
| 584 | return buffer; |
| 585 | } |
| 586 | |
| 587 | char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH(32 * 2 + 1)]) { |
| 588 | SHA256_CTX context; |
| 589 | |
| 590 | apr__SHA256_Init(&context); |
| 591 | apr__SHA256_Update(&context, data, len); |
| 592 | return apr__SHA256_End(&context, digest); |
| 593 | } |
| 594 | |
| 595 | |
| 596 | /*** SHA-512: *********************************************************/ |
| 597 | void apr__SHA512_Init(SHA512_CTX* context) { |
| 598 | if (context == (SHA512_CTX*)0) { |
| 599 | return; |
| 600 | } |
| 601 | MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha512_initial_hash_value), (64) ); |
| 602 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH)memset((context->buffer), 0, (128)); |
| 603 | context->bitcount[0] = context->bitcount[1] = 0; |
| 604 | } |
| 605 | |
| 606 | #ifdef SHA2_UNROLL_TRANSFORM |
| 607 | |
| 608 | /* Unrolled SHA-512 round macros: */ |
| 609 | #if !APR_IS_BIGENDIAN0 |
| 610 | |
| 611 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 612 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8); (W512[j] ) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; \ |
| 613 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
| 614 | K512[j] + W512[j]; \ |
| 615 | (d) += T1, \ |
| 616 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))), \ |
| 617 | j++ |
| 618 | |
| 619 | |
| 620 | #else /* APR_IS_BIGENDIAN */ |
| 621 | |
| 622 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 623 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
| 624 | K512[j] + (W512[j] = *data++); \ |
| 625 | (d) += T1; \ |
| 626 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
| 627 | j++ |
| 628 | |
| 629 | #endif /* APR_IS_BIGENDIAN */ |
| 630 | |
| 631 | #define ROUND512(a,b,c,d,e,f,g,h) \ |
| 632 | s0 = W512[(j+1)&0x0f]; \ |
| 633 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ |
| 634 | s1 = W512[(j+14)&0x0f]; \ |
| 635 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ |
| 636 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ |
| 637 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
| 638 | (d) += T1; \ |
| 639 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
| 640 | j++ |
| 641 | |
| 642 | void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
| 643 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
| 644 | sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; |
| 645 | int j; |
| 646 | |
| 647 | /* Initialize registers with the prev. intermediate value */ |
| 648 | a = context->state[0]; |
| 649 | b = context->state[1]; |
| 650 | c = context->state[2]; |
| 651 | d = context->state[3]; |
| 652 | e = context->state[4]; |
| 653 | f = context->state[5]; |
| 654 | g = context->state[6]; |
| 655 | h = context->state[7]; |
| 656 | |
| 657 | j = 0; |
| 658 | do { |
| 659 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
| 660 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
| 661 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
| 662 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
| 663 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
| 664 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
| 665 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
| 666 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
| 667 | } while (j < 16); |
| 668 | |
| 669 | /* Now for the remaining rounds up to 79: */ |
| 670 | do { |
| 671 | ROUND512(a,b,c,d,e,f,g,h); |
| 672 | ROUND512(h,a,b,c,d,e,f,g); |
| 673 | ROUND512(g,h,a,b,c,d,e,f); |
| 674 | ROUND512(f,g,h,a,b,c,d,e); |
| 675 | ROUND512(e,f,g,h,a,b,c,d); |
| 676 | ROUND512(d,e,f,g,h,a,b,c); |
| 677 | ROUND512(c,d,e,f,g,h,a,b); |
| 678 | ROUND512(b,c,d,e,f,g,h,a); |
| 679 | } while (j < 80); |
| 680 | |
| 681 | /* Compute the current intermediate hash value */ |
| 682 | context->state[0] += a; |
| 683 | context->state[1] += b; |
| 684 | context->state[2] += c; |
| 685 | context->state[3] += d; |
| 686 | context->state[4] += e; |
| 687 | context->state[5] += f; |
| 688 | context->state[6] += g; |
| 689 | context->state[7] += h; |
| 690 | |
| 691 | /* Clean up */ |
| 692 | a = b = c = d = e = f = g = h = T1 = 0; |
| 693 | } |
| 694 | |
| 695 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 696 | |
| 697 | void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
| 698 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
| 699 | sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; |
| 700 | int j; |
| 701 | |
| 702 | /* Initialize registers with the prev. intermediate value */ |
| 703 | a = context->state[0]; |
| 704 | b = context->state[1]; |
| 705 | c = context->state[2]; |
| 706 | d = context->state[3]; |
| 707 | e = context->state[4]; |
| 708 | f = context->state[5]; |
| 709 | g = context->state[6]; |
| 710 | h = context->state[7]; |
| 711 | |
| 712 | j = 0; |
| 713 | do { |
| 714 | #if !APR_IS_BIGENDIAN0 |
| 715 | /* Convert TO host byte order */ |
| 716 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8); (W512[j] ) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
| 717 | /* Apply the SHA-512 compression function to update a..h */ |
| 718 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; |
| 719 | #else /* APR_IS_BIGENDIAN */ |
| 720 | /* Apply the SHA-512 compression function to update a..h with copy */ |
| 721 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + (W512[j] = *data++); |
| 722 | #endif /* APR_IS_BIGENDIAN */ |
| 723 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
| 724 | h = g; |
| 725 | g = f; |
| 726 | f = e; |
| 727 | e = d + T1; |
| 728 | d = c; |
| 729 | c = b; |
| 730 | b = a; |
| 731 | a = T1 + T2; |
| 732 | |
| 733 | j++; |
| 734 | } while (j < 16); |
| 735 | |
| 736 | do { |
| 737 | /* Part of the message block expansion: */ |
| 738 | s0 = W512[(j+1)&0x0f]; |
| 739 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); |
| 740 | s1 = W512[(j+14)&0x0f]; |
| 741 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); |
| 742 | |
| 743 | /* Apply the SHA-512 compression function to update a..h */ |
| 744 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + |
| 745 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
| 746 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
| 747 | h = g; |
| 748 | g = f; |
| 749 | f = e; |
| 750 | e = d + T1; |
| 751 | d = c; |
| 752 | c = b; |
| 753 | b = a; |
| 754 | a = T1 + T2; |
| 755 | |
| 756 | j++; |
| 757 | } while (j < 80); |
| 758 | |
| 759 | /* Compute the current intermediate hash value */ |
| 760 | context->state[0] += a; |
| 761 | context->state[1] += b; |
| 762 | context->state[2] += c; |
| 763 | context->state[3] += d; |
| 764 | context->state[4] += e; |
| 765 | context->state[5] += f; |
| 766 | context->state[6] += g; |
| 767 | context->state[7] += h; |
| 768 | |
| 769 | /* Clean up */ |
| 770 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
Value stored to 'a' is never read | |
| 771 | } |
| 772 | |
| 773 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 774 | |
| 775 | void apr__SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { |
| 776 | unsigned int freespace, usedspace; |
| 777 | |
| 778 | if (len == 0) { |
| 779 | /* Calling with no data is valid - we do nothing */ |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | /* Sanity check: */ |
| 784 | assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0)((context != (SHA512_CTX*)0 && data != (sha2_byte*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0 && data != (sha2_byte*)0" , "random/unix/sha2.c", 784, __PRETTY_FUNCTION__)); |
| 785 | |
| 786 | usedspace = (unsigned int)((context->bitcount[0] >> 3) |
| 787 | % SHA512_BLOCK_LENGTH128); |
| 788 | if (usedspace > 0) { |
| 789 | /* Calculate how much free space is available in the buffer */ |
| 790 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; |
| 791 | |
| 792 | if (len >= freespace) { |
| 793 | /* Fill the buffer completely and process it */ |
| 794 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace)memcpy((&context->buffer[usedspace]), (data), (freespace )); |
| 795 | ADDINC128(context->bitcount, freespace << 3){ (context->bitcount)[0] += (sha2_word64)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } }; |
| 796 | len -= freespace; |
| 797 | data += freespace; |
| 798 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
| 799 | } else { |
| 800 | /* The buffer is not yet full */ |
| 801 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len)memcpy((&context->buffer[usedspace]), (data), (len)); |
| 802 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
| 803 | /* Clean up: */ |
| 804 | usedspace = freespace = 0; |
| 805 | return; |
| 806 | } |
| 807 | } |
| 808 | while (len >= SHA512_BLOCK_LENGTH128) { |
| 809 | /* Process as many complete blocks as we can */ |
| 810 | apr__SHA512_Transform(context, (sha2_word64*)data); |
| 811 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3){ (context->bitcount)[0] += (sha2_word64)(128 << 3); if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } }; |
| 812 | len -= SHA512_BLOCK_LENGTH128; |
| 813 | data += SHA512_BLOCK_LENGTH128; |
| 814 | } |
| 815 | if (len > 0) { |
| 816 | /* There's left-overs, so save 'em */ |
| 817 | MEMCPY_BCOPY(context->buffer, data, len)memcpy((context->buffer), (data), (len)); |
| 818 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
| 819 | } |
| 820 | /* Clean up: */ |
| 821 | usedspace = freespace = 0; |
| 822 | } |
| 823 | |
| 824 | void apr__SHA512_Last(SHA512_CTX* context) { |
| 825 | unsigned int usedspace; |
| 826 | |
| 827 | usedspace = (unsigned int)((context->bitcount[0] >> 3) |
| 828 | % SHA512_BLOCK_LENGTH128); |
| 829 | #if !APR_IS_BIGENDIAN0 |
| 830 | /* Convert FROM host byte order */ |
| 831 | REVERSE64(context->bitcount[0],context->bitcount[0]){ sha2_word64 tmp = (context->bitcount[0]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount[0]) = ((tmp & 0xffff0000ffff0000UL ) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16 ); }; |
| 832 | REVERSE64(context->bitcount[1],context->bitcount[1]){ sha2_word64 tmp = (context->bitcount[1]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->bitcount[1]) = ((tmp & 0xffff0000ffff0000UL ) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16 ); }; |
| 833 | #endif |
| 834 | if (usedspace > 0) { |
| 835 | /* Begin padding with a 1 bit: */ |
| 836 | context->buffer[usedspace++] = 0x80; |
| 837 | |
| 838 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { |
| 839 | /* Set-up for the last transform: */ |
| 840 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, ((128 - 16) - usedspace)); |
| 841 | } else { |
| 842 | if (usedspace < SHA512_BLOCK_LENGTH128) { |
| 843 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace)memset((&context->buffer[usedspace]), 0, (128 - usedspace )); |
| 844 | } |
| 845 | /* Do second-to-last transform: */ |
| 846 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
| 847 | |
| 848 | /* And set-up for the last transform: */ |
| 849 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2)memset((context->buffer), 0, (128 - 2)); |
| 850 | } |
| 851 | } else { |
| 852 | /* Prepare for final transform: */ |
| 853 | MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH)memset((context->buffer), 0, ((128 - 16))); |
| 854 | |
| 855 | /* Begin padding with a 1 bit: */ |
| 856 | *context->buffer = 0x80; |
| 857 | } |
| 858 | /* Store the length of input data (in bits): */ |
| 859 | *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)] = context->bitcount[1]; |
| 860 | *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)+8] = context->bitcount[0]; |
| 861 | |
| 862 | /* Final transform: */ |
| 863 | apr__SHA512_Transform(context, (sha2_word64*)context->buffer); |
| 864 | } |
| 865 | |
| 866 | void apr__SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { |
| 867 | sha2_word64 *d = (sha2_word64*)digest; |
| 868 | |
| 869 | /* Sanity check: */ |
| 870 | assert(context != (SHA512_CTX*)0)((context != (SHA512_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0" , "random/unix/sha2.c", 870, __PRETTY_FUNCTION__)); |
| 871 | |
| 872 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 873 | if (digest != (sha2_byte*)0) { |
| 874 | apr__SHA512_Last(context); |
| 875 | |
| 876 | /* Save the hash data for output: */ |
| 877 | #if !APR_IS_BIGENDIAN0 |
| 878 | { |
| 879 | /* Convert TO host byte order */ |
| 880 | int j; |
| 881 | for (j = 0; j < 8; j++) { |
| 882 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->state[j]) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
| 883 | *d++ = context->state[j]; |
| 884 | } |
| 885 | } |
| 886 | #else /* APR_IS_BIGENDIAN */ |
| 887 | MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH)memcpy((d), (context->state), (64)); |
| 888 | #endif /* APR_IS_BIGENDIAN */ |
| 889 | } |
| 890 | |
| 891 | /* Zero out state data */ |
| 892 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 893 | } |
| 894 | |
| 895 | char *apr__SHA512_End(SHA512_CTX* context, char buffer[]) { |
| 896 | sha2_byte digest[SHA512_DIGEST_LENGTH64], *d = digest; |
| 897 | int i; |
| 898 | |
| 899 | /* Sanity check: */ |
| 900 | assert(context != (SHA512_CTX*)0)((context != (SHA512_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA512_CTX*)0" , "random/unix/sha2.c", 900, __PRETTY_FUNCTION__)); |
| 901 | |
| 902 | if (buffer != (char*)0) { |
| 903 | apr__SHA512_Final(digest, context); |
| 904 | |
| 905 | for (i = 0; i < SHA512_DIGEST_LENGTH64; i++) { |
| 906 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| 907 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| 908 | d++; |
| 909 | } |
| 910 | *buffer = (char)0; |
| 911 | } else { |
| 912 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 913 | } |
| 914 | MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH)memset((digest), 0, (64)); |
| 915 | return buffer; |
| 916 | } |
| 917 | |
| 918 | char* apr__SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH(64 * 2 + 1)]) { |
| 919 | SHA512_CTX context; |
| 920 | |
| 921 | apr__SHA512_Init(&context); |
| 922 | apr__SHA512_Update(&context, data, len); |
| 923 | return apr__SHA512_End(&context, digest); |
| 924 | } |
| 925 | |
| 926 | |
| 927 | /*** SHA-384: *********************************************************/ |
| 928 | void apr__SHA384_Init(SHA384_CTX* context) { |
| 929 | if (context == (SHA384_CTX*)0) { |
| 930 | return; |
| 931 | } |
| 932 | MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha384_initial_hash_value), (64) ); |
| 933 | MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH)memset((context->buffer), 0, (128)); |
| 934 | context->bitcount[0] = context->bitcount[1] = 0; |
| 935 | } |
| 936 | |
| 937 | void apr__SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { |
| 938 | apr__SHA512_Update((SHA512_CTX*)context, data, len); |
| 939 | } |
| 940 | |
| 941 | void apr__SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { |
| 942 | sha2_word64 *d = (sha2_word64*)digest; |
| 943 | |
| 944 | /* Sanity check: */ |
| 945 | assert(context != (SHA384_CTX*)0)((context != (SHA384_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA384_CTX*)0" , "random/unix/sha2.c", 945, __PRETTY_FUNCTION__)); |
| 946 | |
| 947 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 948 | if (digest != (sha2_byte*)0) { |
| 949 | apr__SHA512_Last((SHA512_CTX*)context); |
| 950 | |
| 951 | /* Save the hash data for output: */ |
| 952 | #if !APR_IS_BIGENDIAN0 |
| 953 | { |
| 954 | /* Convert TO host byte order */ |
| 955 | int j; |
| 956 | for (j = 0; j < 6; j++) { |
| 957 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00UL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffUL) << 8) ; (context->state[j]) = ((tmp & 0xffff0000ffff0000UL) >> 16) | ((tmp & 0x0000ffff0000ffffUL) << 16); }; |
| 958 | *d++ = context->state[j]; |
| 959 | } |
| 960 | } |
| 961 | #else /* APR_IS_BIGENDIAN */ |
| 962 | MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH)memcpy((d), (context->state), (48)); |
| 963 | #endif /* APR_IS_BIGENDIAN */ |
| 964 | } |
| 965 | |
| 966 | /* Zero out state data */ |
| 967 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 968 | } |
| 969 | |
| 970 | char *apr__SHA384_End(SHA384_CTX* context, char buffer[]) { |
| 971 | sha2_byte digest[SHA384_DIGEST_LENGTH48], *d = digest; |
| 972 | int i; |
| 973 | |
| 974 | /* Sanity check: */ |
| 975 | assert(context != (SHA384_CTX*)0)((context != (SHA384_CTX*)0) ? (void) (0) : __assert_fail ("context != (SHA384_CTX*)0" , "random/unix/sha2.c", 975, __PRETTY_FUNCTION__)); |
| 976 | |
| 977 | if (buffer != (char*)0) { |
| 978 | apr__SHA384_Final(digest, context); |
| 979 | |
| 980 | for (i = 0; i < SHA384_DIGEST_LENGTH48; i++) { |
| 981 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| 982 | *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| 983 | d++; |
| 984 | } |
| 985 | *buffer = (char)0; |
| 986 | } else { |
| 987 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
| 988 | } |
| 989 | MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH)memset((digest), 0, (48)); |
| 990 | return buffer; |
| 991 | } |
| 992 | |
| 993 | char* apr__SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH(48 * 2 + 1)]) { |
| 994 | SHA384_CTX context; |
| 995 | |
| 996 | apr__SHA384_Init(&context); |
| 997 | apr__SHA384_Update(&context, data, len); |
| 998 | return apr__SHA384_End(&context, digest); |
| 999 | } |
| 1000 |