| File: | libs/libsndfile/src/ALAC/alac_decoder.c |
| Location: | line 221, column 6 |
| Description: | Value stored to 'mixRes' is never read |
| 1 | /* |
| 2 | * Copyright (c) 2011 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2012-2013 Erik de Castro Lopo <erikd@mega-nerd.com> |
| 4 | * |
| 5 | * @APPLE_APACHE_LICENSE_HEADER_START@ |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | * you may not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | * |
| 19 | * @APPLE_APACHE_LICENSE_HEADER_END@ |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | File: ALACDecoder.cpp |
| 24 | */ |
| 25 | |
| 26 | #include <stdlib.h> |
| 27 | #include <stddef.h> |
| 28 | #include <string.h> |
| 29 | |
| 30 | #include "alac_codec.h" |
| 31 | |
| 32 | #include "dplib.h" |
| 33 | #include "aglib.h" |
| 34 | #include "matrixlib.h" |
| 35 | |
| 36 | #include "ALACBitUtilities.h" |
| 37 | #include "EndianPortable.h" |
| 38 | |
| 39 | typedef enum |
| 40 | { false = 0, |
| 41 | true = 1 |
| 42 | } bool ; |
| 43 | |
| 44 | // constants/data |
| 45 | const uint32_t kMaxBitDepth = 32; // max allowed bit depth is 32 |
| 46 | |
| 47 | |
| 48 | // prototypes |
| 49 | static int32_t alac_fill_element (struct BitBuffer * bits) ; |
| 50 | static int32_t alac_data_stream_element (struct BitBuffer * bits) ; |
| 51 | |
| 52 | static void Zero32( int32_t * buffer, uint32_t numItems, uint32_t stride ); |
| 53 | |
| 54 | |
| 55 | /* |
| 56 | Init() |
| 57 | - initialize the decoder with the given configuration |
| 58 | */ |
| 59 | int32_t |
| 60 | alac_decoder_init (ALAC_DECODER *p, void * inMagicCookie, uint32_t inMagicCookieSize) |
| 61 | { |
| 62 | int32_t status = ALAC_noErr; |
| 63 | ALACSpecificConfig theConfig; |
| 64 | uint8_t * theActualCookie = (uint8_t *)inMagicCookie; |
| 65 | uint32_t theCookieBytesRemaining = inMagicCookieSize; |
| 66 | |
| 67 | // For historical reasons the decoder needs to be resilient to magic cookies vended by older encoders. |
| 68 | // As specified in the ALACMagicCookieDescription.txt document, there may be additional data encapsulating |
| 69 | // the ALACSpecificConfig. This would consist of format ('frma') and 'alac' atoms which precede the |
| 70 | // ALACSpecificConfig. |
| 71 | // See ALACMagicCookieDescription.txt for additional documentation concerning the 'magic cookie' |
| 72 | |
| 73 | // skip format ('frma') atom if present |
| 74 | if (theActualCookie[4] == 'f' && theActualCookie[5] == 'r' && theActualCookie[6] == 'm' && theActualCookie[7] == 'a') |
| 75 | { |
| 76 | theActualCookie += 12; |
| 77 | theCookieBytesRemaining -= 12; |
| 78 | } |
| 79 | |
| 80 | // skip 'alac' atom header if present |
| 81 | if (theActualCookie[4] == 'a' && theActualCookie[5] == 'l' && theActualCookie[6] == 'a' && theActualCookie[7] == 'c') |
| 82 | { |
| 83 | theActualCookie += 12; |
| 84 | theCookieBytesRemaining -= 12; |
| 85 | } |
| 86 | |
| 87 | // read the ALACSpecificConfig |
| 88 | if (theCookieBytesRemaining >= sizeof(ALACSpecificConfig)) |
| 89 | { |
| 90 | theConfig.frameLength = psf_get_be32 (theActualCookie, offsetof (ALACSpecificConfig, frameLength)__builtin_offsetof(ALACSpecificConfig, frameLength)) ; |
| 91 | |
| 92 | if (theConfig.frameLength > ALAC_FRAME_LENGTH4096) |
| 93 | return fALAC_FrameLengthError ; |
| 94 | |
| 95 | theConfig.compatibleVersion = theActualCookie [offsetof (ALACSpecificConfig, compatibleVersion)__builtin_offsetof(ALACSpecificConfig, compatibleVersion)] ; |
| 96 | theConfig.bitDepth = theActualCookie [offsetof (ALACSpecificConfig, bitDepth)__builtin_offsetof(ALACSpecificConfig, bitDepth)] ; |
| 97 | theConfig.pb = theActualCookie [offsetof (ALACSpecificConfig, pb)__builtin_offsetof(ALACSpecificConfig, pb)] ; |
| 98 | theConfig.mb = theActualCookie [offsetof (ALACSpecificConfig, mb)__builtin_offsetof(ALACSpecificConfig, mb)] ; |
| 99 | theConfig.kb = theActualCookie [offsetof (ALACSpecificConfig, kb)__builtin_offsetof(ALACSpecificConfig, kb)] ; |
| 100 | theConfig.numChannels = theActualCookie [offsetof (ALACSpecificConfig, numChannels)__builtin_offsetof(ALACSpecificConfig, numChannels)] ; |
| 101 | theConfig.maxRun = psf_get_be16 (theActualCookie, offsetof (ALACSpecificConfig, maxRun)__builtin_offsetof(ALACSpecificConfig, maxRun)) ; |
| 102 | theConfig.maxFrameBytes = psf_get_be32 (theActualCookie, offsetof (ALACSpecificConfig, maxFrameBytes)__builtin_offsetof(ALACSpecificConfig, maxFrameBytes)) ; |
| 103 | theConfig.avgBitRate = psf_get_be32 (theActualCookie, offsetof (ALACSpecificConfig, avgBitRate)__builtin_offsetof(ALACSpecificConfig, avgBitRate)) ; |
| 104 | theConfig.sampleRate = psf_get_be32 (theActualCookie, offsetof (ALACSpecificConfig, sampleRate)__builtin_offsetof(ALACSpecificConfig, sampleRate)) ; |
| 105 | |
| 106 | p->mConfig = theConfig; |
| 107 | |
| 108 | RequireAction( p->mConfig.compatibleVersion <= kALACVersion, return kALAC_ParamError; )if (!(p->mConfig.compatibleVersion <= kALACVersion)) { return kALAC_ParamError; }; |
| 109 | |
| 110 | RequireAction( (p->mMixBufferU != NULL) && (p->mMixBufferV != NULL) && (p->mPredictor != NULL),if (!((p->mMixBufferU != ((void*)0)) && (p->mMixBufferV != ((void*)0)) && (p->mPredictor != ((void*)0)))) { status = kALAC_MemFullError; goto Exit; } |
| 111 | status = kALAC_MemFullError; goto Exit; )if (!((p->mMixBufferU != ((void*)0)) && (p->mMixBufferV != ((void*)0)) && (p->mPredictor != ((void*)0)))) { status = kALAC_MemFullError; goto Exit; }; |
| 112 | } |
| 113 | else |
| 114 | { |
| 115 | status = kALAC_ParamError; |
| 116 | } |
| 117 | |
| 118 | // skip to Channel Layout Info |
| 119 | // theActualCookie += sizeof(ALACSpecificConfig); |
| 120 | |
| 121 | // Currently, the Channel Layout Info portion of the magic cookie (as defined in the |
| 122 | // ALACMagicCookieDescription.txt document) is unused by the decoder. |
| 123 | |
| 124 | Exit: |
| 125 | return status; |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | Decode() |
| 130 | - the decoded samples are interleaved into the output buffer in the order they arrive in |
| 131 | the bitstream |
| 132 | */ |
| 133 | int32_t |
| 134 | alac_decode (ALAC_DECODER *p, struct BitBuffer * bits, int32_t * sampleBuffer, uint32_t numSamples, uint32_t numChannels, uint32_t * outNumSamples) |
| 135 | { |
| 136 | BitBuffer shiftBits; |
| 137 | uint32_t bits1, bits2; |
| 138 | uint8_t tag; |
| 139 | uint8_t elementInstanceTag; |
| 140 | AGParamRec agParams; |
| 141 | uint32_t channelIndex; |
| 142 | int16_t coefsU[32]; // max possible size is 32 although NUMCOEPAIRS is the current limit |
| 143 | int16_t coefsV[32]; |
| 144 | uint8_t numU, numV; |
| 145 | uint8_t mixBits; |
| 146 | int8_t mixRes; |
| 147 | uint16_t unusedHeader; |
| 148 | uint8_t escapeFlag; |
| 149 | uint32_t chanBits; |
| 150 | uint8_t bytesShifted; |
| 151 | uint32_t shift; |
| 152 | uint8_t modeU, modeV; |
| 153 | uint32_t denShiftU, denShiftV; |
| 154 | uint16_t pbFactorU, pbFactorV; |
| 155 | uint16_t pb; |
| 156 | int32_t * out32; |
| 157 | uint8_t headerByte; |
| 158 | uint8_t partialFrame; |
| 159 | uint32_t extraBits; |
| 160 | int32_t val; |
| 161 | uint32_t i, j; |
| 162 | int32_t status; |
| 163 | |
| 164 | RequireAction( (bits != NULL) && (sampleBuffer != NULL) && (outNumSamples != NULL), return kALAC_ParamError; )if (!((bits != ((void*)0)) && (sampleBuffer != ((void *)0)) && (outNumSamples != ((void*)0)))) { return kALAC_ParamError ; }; |
| 165 | RequireAction( numChannels > 0, return kALAC_ParamError; )if (!(numChannels > 0)) { return kALAC_ParamError; }; |
| 166 | |
| 167 | p->mActiveElements = 0; |
| 168 | channelIndex = 0; |
| 169 | |
| 170 | status = ALAC_noErr; |
| 171 | *outNumSamples = numSamples; |
| 172 | |
| 173 | while ( status == ALAC_noErr ) |
| 174 | { |
| 175 | // bail if we ran off the end of the buffer |
| 176 | RequireAction( bits->cur < bits->end, status = kALAC_ParamError; goto Exit; )if (!(bits->cur < bits->end)) { status = kALAC_ParamError ; goto Exit; }; |
| 177 | |
| 178 | // copy global decode params for this element |
| 179 | pb = p->mConfig.pb; |
| 180 | |
| 181 | // read element tag |
| 182 | tag = BitBufferReadSmall( bits, 3 ); |
| 183 | switch ( tag ) |
| 184 | { |
| 185 | case ID_SCE: |
| 186 | case ID_LFE: |
| 187 | { |
| 188 | // mono/LFE channel |
| 189 | elementInstanceTag = BitBufferReadSmall( bits, 4 ); |
| 190 | p->mActiveElements |= (1u << elementInstanceTag); |
| 191 | |
| 192 | // read the 12 unused header bits |
| 193 | unusedHeader = (uint16_t) BitBufferRead( bits, 12 ); |
| 194 | RequireAction( unusedHeader == 0, status = kALAC_ParamError; goto Exit; )if (!(unusedHeader == 0)) { status = kALAC_ParamError; goto Exit ; }; |
| 195 | |
| 196 | // read the 1-bit "partial frame" flag, 2-bit "shift-off" flag & 1-bit "escape" flag |
| 197 | headerByte = (uint8_t) BitBufferRead( bits, 4 ); |
| 198 | |
| 199 | partialFrame = headerByte >> 3; |
| 200 | |
| 201 | bytesShifted = (headerByte >> 1) & 0x3u; |
| 202 | RequireAction( bytesShifted != 3, status = kALAC_ParamError; goto Exit; )if (!(bytesShifted != 3)) { status = kALAC_ParamError; goto Exit ; }; |
| 203 | |
| 204 | shift = bytesShifted * 8; |
| 205 | |
| 206 | escapeFlag = headerByte & 0x1; |
| 207 | |
| 208 | chanBits = p->mConfig.bitDepth - (bytesShifted * 8); |
| 209 | |
| 210 | // check for partial frame to override requested numSamples |
| 211 | if ( partialFrame != 0 ) |
| 212 | { |
| 213 | numSamples = BitBufferRead( bits, 16 ) << 16; |
| 214 | numSamples |= BitBufferRead( bits, 16 ); |
| 215 | } |
| 216 | |
| 217 | if ( escapeFlag == 0 ) |
| 218 | { |
| 219 | // compressed frame, read rest of parameters |
| 220 | mixBits = (uint8_t) BitBufferRead( bits, 8 ); |
| 221 | mixRes = (int8_t) BitBufferRead( bits, 8 ); |
Value stored to 'mixRes' is never read | |
| 222 | //Assert( (mixBits == 0) && (mixRes == 0) ); // no mixing for mono |
| 223 | |
| 224 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 225 | modeU = headerByte >> 4; |
| 226 | denShiftU = headerByte & 0xfu; |
| 227 | |
| 228 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 229 | pbFactorU = headerByte >> 5; |
| 230 | numU = headerByte & 0x1fu; |
| 231 | |
| 232 | for ( i = 0; i < numU; i++ ) |
| 233 | coefsU[i] = (int16_t) BitBufferRead( bits, 16 ); |
| 234 | |
| 235 | // if shift active, skip the the shift buffer but remember where it starts |
| 236 | if ( bytesShifted != 0 ) |
| 237 | { |
| 238 | shiftBits = *bits; |
| 239 | BitBufferAdvance( bits, (bytesShifted * 8) * numSamples ); |
| 240 | } |
| 241 | |
| 242 | // decompress |
| 243 | set_ag_params( &agParams, p->mConfig.mb, (pb * pbFactorU) / 4, p->mConfig.kb, numSamples, numSamples, p->mConfig.maxRun ); |
| 244 | status = dyn_decomp( &agParams, bits, p->mPredictor, numSamples, chanBits, &bits1 ); |
| 245 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 246 | |
| 247 | if ( modeU == 0 ) |
| 248 | { |
| 249 | unpc_block( p->mPredictor, p->mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU ); |
| 250 | } |
| 251 | else |
| 252 | { |
| 253 | // the special "numActive == 31" mode can be done in-place |
| 254 | unpc_block( p->mPredictor, p->mPredictor, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
| 255 | unpc_block( p->mPredictor, p->mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU ); |
| 256 | } |
| 257 | } |
| 258 | else |
| 259 | { |
| 260 | //Assert( bytesShifted == 0 ); |
| 261 | |
| 262 | // uncompressed frame, copy data into the mix buffer to use common output code |
| 263 | shift = 32 - chanBits; |
| 264 | if ( chanBits <= 16 ) |
| 265 | { |
| 266 | for ( i = 0; i < numSamples; i++ ) |
| 267 | { |
| 268 | val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits ); |
| 269 | val = (val << shift) >> shift; |
| 270 | p->mMixBufferU[i] = val; |
| 271 | } |
| 272 | } |
| 273 | else |
| 274 | { |
| 275 | // BitBufferRead() can't read more than 16 bits at a time so break up the reads |
| 276 | extraBits = chanBits - 16; |
| 277 | for ( i = 0; i < numSamples; i++ ) |
| 278 | { |
| 279 | val = (int32_t) BitBufferRead( bits, 16 ); |
| 280 | val = (val << 16) >> shift; |
| 281 | p->mMixBufferU[i] = val | BitBufferRead( bits, (uint8_t) extraBits ); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | mixBits = mixRes = 0; |
| 286 | bits1 = chanBits * numSamples; |
| 287 | bytesShifted = 0; |
| 288 | } |
| 289 | |
| 290 | // now read the shifted values into the shift buffer |
| 291 | if ( bytesShifted != 0 ) |
| 292 | { |
| 293 | shift = bytesShifted * 8; |
| 294 | //Assert( shift <= 16 ); |
| 295 | |
| 296 | for ( i = 0; i < numSamples; i++ ) |
| 297 | p->mShiftBuffer[i] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift ); |
| 298 | } |
| 299 | |
| 300 | // convert 32-bit integers into output buffer |
| 301 | switch ( p->mConfig.bitDepth ) |
| 302 | { |
| 303 | case 16: |
| 304 | out32 = sampleBuffer + channelIndex; |
| 305 | for ( i = 0, j = 0; i < numSamples; i++, j += numChannels ) |
| 306 | out32[j] = p->mMixBufferU[i] << 16; |
| 307 | break; |
| 308 | case 20: |
| 309 | out32 = sampleBuffer + channelIndex; |
| 310 | copyPredictorTo20( p->mMixBufferU, out32, numChannels, numSamples ); |
| 311 | break; |
| 312 | case 24: |
| 313 | out32 = sampleBuffer + channelIndex; |
| 314 | if ( bytesShifted != 0 ) |
| 315 | copyPredictorTo24Shift( p->mMixBufferU, p->mShiftBuffer, out32, numChannels, numSamples, bytesShifted ); |
| 316 | else |
| 317 | copyPredictorTo24( p->mMixBufferU, out32, numChannels, numSamples ); |
| 318 | break; |
| 319 | case 32: |
| 320 | out32 = sampleBuffer + channelIndex; |
| 321 | if ( bytesShifted != 0 ) |
| 322 | copyPredictorTo32Shift( p->mMixBufferU, p->mShiftBuffer, out32, numChannels, numSamples, bytesShifted ); |
| 323 | else |
| 324 | copyPredictorTo32( p->mMixBufferU, out32, numChannels, numSamples); |
| 325 | break; |
| 326 | } |
| 327 | |
| 328 | channelIndex += 1; |
| 329 | *outNumSamples = numSamples; |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | case ID_CPE: |
| 334 | { |
| 335 | // if decoding this pair would take us over the max channels limit, bail |
| 336 | if ( (channelIndex + 2) > numChannels ) |
| 337 | goto NoMoreChannels; |
| 338 | |
| 339 | // stereo channel pair |
| 340 | elementInstanceTag = BitBufferReadSmall( bits, 4 ); |
| 341 | p->mActiveElements |= (1u << elementInstanceTag); |
| 342 | |
| 343 | // read the 12 unused header bits |
| 344 | unusedHeader = (uint16_t) BitBufferRead( bits, 12 ); |
| 345 | RequireAction( unusedHeader == 0, status = kALAC_ParamError; goto Exit; )if (!(unusedHeader == 0)) { status = kALAC_ParamError; goto Exit ; }; |
| 346 | |
| 347 | // read the 1-bit "partial frame" flag, 2-bit "shift-off" flag & 1-bit "escape" flag |
| 348 | headerByte = (uint8_t) BitBufferRead( bits, 4 ); |
| 349 | |
| 350 | partialFrame = headerByte >> 3; |
| 351 | |
| 352 | bytesShifted = (headerByte >> 1) & 0x3u; |
| 353 | RequireAction( bytesShifted != 3, status = kALAC_ParamError; goto Exit; )if (!(bytesShifted != 3)) { status = kALAC_ParamError; goto Exit ; }; |
| 354 | |
| 355 | shift = bytesShifted * 8; |
| 356 | |
| 357 | escapeFlag = headerByte & 0x1; |
| 358 | |
| 359 | chanBits = p->mConfig.bitDepth - (bytesShifted * 8) + 1; |
| 360 | |
| 361 | // check for partial frame length to override requested numSamples |
| 362 | if ( partialFrame != 0 ) |
| 363 | { |
| 364 | numSamples = BitBufferRead( bits, 16 ) << 16; |
| 365 | numSamples |= BitBufferRead( bits, 16 ); |
| 366 | } |
| 367 | |
| 368 | if ( escapeFlag == 0 ) |
| 369 | { |
| 370 | // compressed frame, read rest of parameters |
| 371 | mixBits = (uint8_t) BitBufferRead( bits, 8 ); |
| 372 | mixRes = (int8_t) BitBufferRead( bits, 8 ); |
| 373 | |
| 374 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 375 | modeU = headerByte >> 4; |
| 376 | denShiftU = headerByte & 0xfu; |
| 377 | |
| 378 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 379 | pbFactorU = headerByte >> 5; |
| 380 | numU = headerByte & 0x1fu; |
| 381 | for ( i = 0; i < numU; i++ ) |
| 382 | coefsU[i] = (int16_t) BitBufferRead( bits, 16 ); |
| 383 | |
| 384 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 385 | modeV = headerByte >> 4; |
| 386 | denShiftV = headerByte & 0xfu; |
| 387 | |
| 388 | headerByte = (uint8_t) BitBufferRead( bits, 8 ); |
| 389 | pbFactorV = headerByte >> 5; |
| 390 | numV = headerByte & 0x1fu; |
| 391 | for ( i = 0; i < numV; i++ ) |
| 392 | coefsV[i] = (int16_t) BitBufferRead( bits, 16 ); |
| 393 | |
| 394 | // if shift active, skip the interleaved shifted values but remember where they start |
| 395 | if ( bytesShifted != 0 ) |
| 396 | { |
| 397 | shiftBits = *bits; |
| 398 | BitBufferAdvance( bits, (bytesShifted * 8) * 2 * numSamples ); |
| 399 | } |
| 400 | |
| 401 | // decompress and run predictor for "left" channel |
| 402 | set_ag_params( &agParams, p->mConfig.mb, (pb * pbFactorU) / 4, p->mConfig.kb, numSamples, numSamples, p->mConfig.maxRun ); |
| 403 | status = dyn_decomp( &agParams, bits, p->mPredictor, numSamples, chanBits, &bits1 ); |
| 404 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 405 | |
| 406 | if ( modeU == 0 ) |
| 407 | { |
| 408 | unpc_block( p->mPredictor, p->mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU ); |
| 409 | } |
| 410 | else |
| 411 | { |
| 412 | // the special "numActive == 31" mode can be done in-place |
| 413 | unpc_block( p->mPredictor, p->mPredictor, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
| 414 | unpc_block( p->mPredictor, p->mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU ); |
| 415 | } |
| 416 | |
| 417 | // decompress and run predictor for "right" channel |
| 418 | set_ag_params( &agParams, p->mConfig.mb, (pb * pbFactorV) / 4, p->mConfig.kb, numSamples, numSamples, p->mConfig.maxRun ); |
| 419 | status = dyn_decomp( &agParams, bits, p->mPredictor, numSamples, chanBits, &bits2 ); |
| 420 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
| 421 | |
| 422 | if ( modeV == 0 ) |
| 423 | { |
| 424 | unpc_block( p->mPredictor, p->mMixBufferV, numSamples, &coefsV[0], numV, chanBits, denShiftV ); |
| 425 | } |
| 426 | else |
| 427 | { |
| 428 | // the special "numActive == 31" mode can be done in-place |
| 429 | unpc_block( p->mPredictor, p->mPredictor, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
| 430 | unpc_block( p->mPredictor, p->mMixBufferV, numSamples, &coefsV[0], numV, chanBits, denShiftV ); |
| 431 | } |
| 432 | } |
| 433 | else |
| 434 | { |
| 435 | //Assert( bytesShifted == 0 ); |
| 436 | |
| 437 | // uncompressed frame, copy data into the mix buffers to use common output code |
| 438 | chanBits = p->mConfig.bitDepth; |
| 439 | shift = 32 - chanBits; |
| 440 | if ( chanBits <= 16 ) |
| 441 | { |
| 442 | for ( i = 0; i < numSamples; i++ ) |
| 443 | { |
| 444 | val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits ); |
| 445 | val = (val << shift) >> shift; |
| 446 | p->mMixBufferU[i] = val; |
| 447 | |
| 448 | val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits ); |
| 449 | val = (val << shift) >> shift; |
| 450 | p->mMixBufferV[i] = val; |
| 451 | } |
| 452 | } |
| 453 | else |
| 454 | { |
| 455 | // BitBufferRead() can't read more than 16 bits at a time so break up the reads |
| 456 | extraBits = chanBits - 16; |
| 457 | for ( i = 0; i < numSamples; i++ ) |
| 458 | { |
| 459 | val = (int32_t) BitBufferRead( bits, 16 ); |
| 460 | val = (val << 16) >> shift; |
| 461 | p->mMixBufferU[i] = val | BitBufferRead( bits, (uint8_t)extraBits ); |
| 462 | |
| 463 | val = (int32_t) BitBufferRead( bits, 16 ); |
| 464 | val = (val << 16) >> shift; |
| 465 | p->mMixBufferV[i] = val | BitBufferRead( bits, (uint8_t)extraBits ); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | bits1 = chanBits * numSamples; |
| 470 | bits2 = chanBits * numSamples; |
| 471 | mixBits = mixRes = 0; |
| 472 | bytesShifted = 0; |
| 473 | } |
| 474 | |
| 475 | // now read the shifted values into the shift buffer |
| 476 | if ( bytesShifted != 0 ) |
| 477 | { |
| 478 | shift = bytesShifted * 8; |
| 479 | //Assert( shift <= 16 ); |
| 480 | |
| 481 | for ( i = 0; i < (numSamples * 2); i += 2 ) |
| 482 | { |
| 483 | p->mShiftBuffer[i + 0] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift ); |
| 484 | p->mShiftBuffer[i + 1] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift ); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | // un-mix the data and convert to output format |
| 489 | // - note that mixRes = 0 means just interleave so we use that path for uncompressed frames |
| 490 | switch ( p->mConfig.bitDepth ) |
| 491 | { |
| 492 | case 16: |
| 493 | out32 = sampleBuffer + channelIndex; |
| 494 | unmix16( p->mMixBufferU, p->mMixBufferV, out32, numChannels, numSamples, mixBits, mixRes ); |
| 495 | break; |
| 496 | case 20: |
| 497 | out32 = sampleBuffer + channelIndex; |
| 498 | unmix20( p->mMixBufferU, p->mMixBufferV, out32, numChannels, numSamples, mixBits, mixRes ); |
| 499 | break; |
| 500 | case 24: |
| 501 | out32 = sampleBuffer + channelIndex; |
| 502 | unmix24( p->mMixBufferU, p->mMixBufferV, out32, numChannels, numSamples, |
| 503 | mixBits, mixRes, p->mShiftBuffer, bytesShifted ); |
| 504 | break; |
| 505 | case 32: |
| 506 | out32 = sampleBuffer + channelIndex; |
| 507 | unmix32( p->mMixBufferU, p->mMixBufferV, out32, numChannels, numSamples, |
| 508 | mixBits, mixRes, p->mShiftBuffer, bytesShifted ); |
| 509 | break; |
| 510 | } |
| 511 | |
| 512 | channelIndex += 2; |
| 513 | *outNumSamples = numSamples; |
| 514 | break; |
| 515 | } |
| 516 | |
| 517 | case ID_CCE: |
| 518 | case ID_PCE: |
| 519 | { |
| 520 | // unsupported element, bail |
| 521 | //AssertNoErr( tag ); |
| 522 | status = kALAC_ParamError; |
| 523 | break; |
| 524 | } |
| 525 | |
| 526 | case ID_DSE: |
| 527 | { |
| 528 | // data stream element -- parse but ignore |
| 529 | status = alac_data_stream_element (bits) ; |
| 530 | break; |
| 531 | } |
| 532 | |
| 533 | case ID_FIL: |
| 534 | { |
| 535 | // fill element -- parse but ignore |
| 536 | status = alac_fill_element (bits) ; |
| 537 | break; |
| 538 | } |
| 539 | |
| 540 | case ID_END: |
| 541 | { |
| 542 | // frame end, all done so byte align the frame and check for overruns |
| 543 | BitBufferByteAlign( bits, false ); |
| 544 | //Assert( bits->cur == bits->end ); |
| 545 | goto Exit; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | #if 0 // ! DEBUG |
| 550 | // if we've decoded all of our channels, bail (but not in debug b/c we want to know if we're seeing bad bits) |
| 551 | // - this also protects us if the config does not match the bitstream or crap data bits follow the audio bits |
| 552 | if ( channelIndex >= numChannels ) |
| 553 | break; |
| 554 | #endif |
| 555 | } |
| 556 | |
| 557 | NoMoreChannels: |
| 558 | |
| 559 | // if we get here and haven't decoded all of the requested channels, fill the remaining channels with zeros |
| 560 | for ( ; channelIndex < numChannels; channelIndex++ ) |
| 561 | { |
| 562 | int32_t * fill32 = sampleBuffer + channelIndex; |
| 563 | Zero32( fill32, numSamples, numChannels ); |
| 564 | } |
| 565 | |
| 566 | Exit: |
| 567 | return status; |
| 568 | } |
| 569 | |
| 570 | #if PRAGMA_MARK0 |
| 571 | #pragma mark - |
| 572 | #endif |
| 573 | |
| 574 | /* |
| 575 | FillElement() |
| 576 | - they're just filler so we don't need 'em |
| 577 | */ |
| 578 | static int32_t |
| 579 | alac_fill_element (struct BitBuffer * bits) |
| 580 | { |
| 581 | int16_t count; |
| 582 | |
| 583 | // 4-bit count or (4-bit + 8-bit count) if 4-bit count == 15 |
| 584 | // - plus this weird -1 thing I still don't fully understand |
| 585 | count = BitBufferReadSmall( bits, 4 ); |
| 586 | if ( count == 15 ) |
| 587 | count += (int16_t) BitBufferReadSmall( bits, 8 ) - 1; |
| 588 | |
| 589 | BitBufferAdvance( bits, count * 8 ); |
| 590 | |
| 591 | RequireAction( bits->cur <= bits->end, return kALAC_ParamError; )if (!(bits->cur <= bits->end)) { return kALAC_ParamError ; }; |
| 592 | |
| 593 | return ALAC_noErr; |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | DataStreamElement() |
| 598 | - we don't care about data stream elements so just skip them |
| 599 | */ |
| 600 | static int32_t |
| 601 | alac_data_stream_element (struct BitBuffer * bits) |
| 602 | { |
| 603 | int32_t data_byte_align_flag; |
| 604 | uint16_t count; |
| 605 | |
| 606 | // the tag associates this data stream element with a given audio element |
| 607 | |
| 608 | /* element_instance_tag = */ BitBufferReadSmall( bits, 4 ); |
| 609 | |
| 610 | data_byte_align_flag = BitBufferReadOne( bits ); |
| 611 | |
| 612 | // 8-bit count or (8-bit + 8-bit count) if 8-bit count == 255 |
| 613 | count = BitBufferReadSmall( bits, 8 ); |
| 614 | if ( count == 255 ) |
| 615 | count += BitBufferReadSmall( bits, 8 ); |
| 616 | |
| 617 | // the align flag means the bitstream should be byte-aligned before reading the following data bytes |
| 618 | if ( data_byte_align_flag ) |
| 619 | BitBufferByteAlign( bits, false ); |
| 620 | |
| 621 | // skip the data bytes |
| 622 | BitBufferAdvance( bits, count * 8 ); |
| 623 | |
| 624 | RequireAction( bits->cur <= bits->end, return kALAC_ParamError; )if (!(bits->cur <= bits->end)) { return kALAC_ParamError ; }; |
| 625 | |
| 626 | return ALAC_noErr; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | ZeroN() |
| 631 | - helper routines to clear out output channel buffers when decoding fewer channels than requested |
| 632 | */ |
| 633 | static void Zero32( int32_t * buffer, uint32_t numItems, uint32_t stride ) |
| 634 | { |
| 635 | uint32_t indx; |
| 636 | |
| 637 | if ( stride == 1 ) |
| 638 | { |
| 639 | memset( buffer, 0, numItems * sizeof(int32_t) ); |
| 640 | } |
| 641 | else |
| 642 | { |
| 643 | for ( indx = 0; indx < (numItems * stride); indx += stride ) |
| 644 | buffer[indx] = 0; |
| 645 | } |
| 646 | } |